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What do these complexes have in common?

• Order complexes

– Distributive lattices

– Geometric lattices

– Face posets of CM complexes

• Finite buildings
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Enumeration

fi = # of i-dimensional faces.

For order complexes this equals # of chains

x0 < · · · < xi

of length i.

(f0, f1, . . . , fd−1) is the f-vector.

All of these complexes are completely balanced.

They can be colored with d colors.

The flag f-vector is the set of all fA, A ⊆ [d].

fA = # faces whose colors equal A.

Notice

fi =
∑

|A|=i+1

fA.
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h-vectors

hi =
i∑

j=0

(−1)i−j
(d− j
d− i

)
fj−1.

Ex: If ∆ is four dimensional, then d = 5 and

h3 = f2 − 3f1 + 6f0 − 10.

Flag h-vectors are defined by

hA =
∑
B⊆A

(−1)|A−B|fB.

Inclusion-exclusion implies∑
|A|=i

hA = hi.
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Example: A distributive lattice

4

1 2 5

3

123                             124                        125                        245

1                              2                         5

12                              15                         24                         25

1234                         1235                      1245
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123                             124                        125                        245

1                              2                         5

12                              15                         24                         25

1234                         1235                      1245

f∅ = 1 h∅ = 1
f{1} = 3 f{1,2} = 7 h{1} = 2 h{1,2} = 1

f{2} = 4 f{1,3} = 9 h{2} = 3 h{1,3} = 3

f{3} = 4 f{2,3} = 8 h{3} = 3 h{2,3} = 1

f{4} = 3 f{1,4} = 8 h{4} = 2 h{1,4} = 3

f{2,4} = 9 h{2,4} = 3

f{3,4} = 7 h{3,4} = 1
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Theorem 1 If ∆ is a finite building, order com-

plex of a geometric lattice or the order complex

of a rank selected face poset of a CM complex

which does not contain the top rank, then

hi ≤ hd−i, i ≤ d/2.

h0 ≤ h1 ≤ · · · ≤ hbd/2c.

Theorem 2 If ∆ is the order complex of a

distributive lattice, then

hi ≥ hd−i, i ≤ d/2.

hd ≤ hd−1 ≤ · · · ≤ hd−bd/2c.
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The proofs of these theorems all depend on

commutative algebra and the g-theorem for

Coxeter complexes.

The first theorem also uses Chari’s convex ear

decompositions. This is a method for decom-

posing a complex into understandable pieces.

In each case the complex can be decomposed

into subcomplexes each of which is a shellable

ball which is itself a subcomplex of a finite Cox-

eter complex.

The order complex of a distributive lattice is

itself a shellable ball which is a subcomplex of

a finite Coxeter complex.
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The weak order

(W,S) a finite Coxeter system.

W is a finite group with generators S = {s1, . . . , sn}
and relations s2

i = 1, (sisj)
mi,j = 1 for some

mi,j ∈ Z.

l(w), the length of w ∈ W is the length of the

shortest word in the generators S which equals

w.

v ≤ w in the weak order if there exists a se-

quence si1, . . . , sij of elements of S (not neces-

sarily distinct) such that v · si1 · · · sij = w and

l(w) = l(v) + j.
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The symmetric group

Let W = Sn, the symmetric group on [n] =

{1, . . . , n}. Let S be the transpositions si =

(i, i+1). Then (W,S) is a Coxeter system with

mi,j = 2 if |i− j| > 1 and mi,j = 3 if |i− j| = 1.

If v and w are elements of Sn written as words

in [n], then v ≤ w if w can be obtained from

v by switching adjacent elements which are in-

creasing.

Example: [2134] < [2314] < [3214] in S4.
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Descent sets

Let w ∈W. The descent set of w is

D(w) = {s ∈ S : l(ws) < l(w).}

For a subset A ⊆ S,

D(A) = {w ∈W : D(w) = A.}
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Symmetric group

Identify S and [n− 1]. Then

D(w) = {w : w(i) > w(i+ 1).}

Example: D[2134] = {1}, D[3214] = {1,2}.
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Definition 1 Let A,B ⊆ S. Then B dominates

A from above if there exists an injection

φ : D(A)→ D(B) such that for all w ∈ D(A),

w ≤ φ(w).

Definition 2 Let A,B ⊆ S. Then A dominates

B from below if there exists an injection

φ : D(B)→ D(A) such that for all w ∈ D(B),

w ≥ φ(w).
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Example in S4

A = {1}, B = {1,2}.

w φ(w)

[2134] ⇒ [3214]
[3124] ⇒ [4312]
[4123] ⇒ [4213]

φ demonstrates that B dominates A from above.

φ−1 demonstrates that A dominates B from

below.

Easy to show that if B dominates A from above

(or below) in Sn, then this also holds in all

Sm, m ≥ n.
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Theorem 3 If B dominates A from above and

∆ is

• The order complex of a geometric lattice

( [W = Sn] Nyman, S.)

• A finite building [W = assoc. Coxeter group]

(S)

• The order complex of the face poset of a

CM complex ([W = Sn] Schweig)

then hA ≤ hB.
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Theorem 4 If ∆ is the order complex of a

distributive lattice and A dominates B from

below, then hB ≤ hA.

This follows easily from the usual Sn EL-labeling

of the poset.

There is no known counterexample to the con-

verse: If hB ≤ hA for all distributive lattices,

then A dominates B from below.

Partial converse:

If hB ≤ hA for all distributive lattices, then

B ⊇ A.

If A dominates B from below, then B ⊇ A.
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Distributive lattice example continued

Recall in our example:

f∅ = 1 h∅ = 1
f{1} = 3 f{1,2} = 7 h{1} = 2 h{1,2} = 1

f{2} = 4 f{1,3} = 9 h{2} = 3 h{1,3} = 3

f{3} = 4 f{2,3} = 8 h{3} = 3 h{2,3} = 1

f{4} = 3 f{1,4} = 8 h{4} = 2 h{1,4} = 3

f{2,4} = 9 h{2,4} = 3

f{3,4} = 7 h{3,4} = 1

We also saw that {1} dominates {1,2} from

below in S5. Other pairs (A,B) with A domi-

nating B from below in S5 are

({2}, {2,3}), ({3}, {2,3}), ({4}, {3,4}).
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Main Problem

Problem 1 Given (W,S) determine when B dom-

inates A from above.
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Theorem 5 (E. Chong, 2009)

• If B dominates A from above, then A ⊆ B.

• Suppose s commutes with all t ∈ A. Then

A ∪ {s} dominates A from above.
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Products

Suppose (W1, S1) and (W2, S2) are two finite

Coxeter systems, B1 dominates A1 from above

in W1 and B2 dominates A2 in (W2, S2). Then

it is easy to see that B1×B2 dominates A1×A2

from above.

However, the converse is false:

In Sn × Sm we see that B × [m− 1] dominates

∅ ×A from above whenever |D(B)| > |D(A)|.
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Symmetric group

For w ∈ Sn let R(w) be w written in reverse.

Equivalently,

R(w) = w · [n n− 1 . . .321].

D(R(w)) = {i : n− 1− i /∈ D(w).}

Define R(A) to be the common descent set of

all permutations in D(A).

Conjecture 1 (Nyman - S.) If A ⊆ R(A), then

R(A) dominates A from above.

Verified through S10 by computer, and for all

n with |A| = 1. (T. DeVries)
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C. Boulet observed that there are no known

counterexamples in Sn known for

A ⊆ B, |D(A)| ≤ |D(B)| →

B dominates A from above.

Other than some data generated by computer,

almost nothing is known about the other irre-

ducible finite Coxeter groups.
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Variations

Let A1, . . . , Am and B1, . . . , Bl be subsets of S

with Ai 6= Aj and Bi 6= Bj for i 6= j.

If there exists an injective map

φ : D(A1) ∪ · · · ∪D(Am)→ D(B1) ∪ · · · ∪D(Bl)

such that w ≤ φ(w) for all w, then

hA1
+ · · ·+ hAm ≤ hB1

+ · · ·+ hBl.

(Geometric lattices, finite buildings, face posets

of CM complexes)
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Example

A1 = {2}, A2 = {3}, B1 = {2,3}, B2 = {1,3}

w φ(w)

[1243] [2143]
[1342] [1432]
[2341] [2431]
[1324] [3142]
[1423] [4132]
[2314] [3241]
[2413] [4231]
[3412] [3421]

This φ shows that h{2}+ h{3} ≤ h{2,3}+ h{1,3}
for rank 4 geometric lattices and the reverse
inequality for rank 4 distributive lattices.

Combined with the previous example gives

h1 ≤ h2.
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Theorem 6 (Nyman, S.) Using these meth-

ods it is possible to explain over 50% of the

inequalities

h0 ≤ h1 ≤ · · · ≤ hbd/2c.

Earliest known form of the problem:

Problem 2 Find a bijection φ from elements

with i-descents to elements with n−i descents,

where n = |S|, such that w ≤ φ(w) for all w.

Sn, i = 1 : P. Edelman (unpublished ∼ ’99)

Sn, i = 1,2 and Bn, i = 1 (Yessenov ∼ ’05)

Sn, n ≤ 9;Bn, n ≤ 6. (DeVries, ’05 via com-

puter)

Note: It is not instantaneously obvious how

this problem behaves under product.
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Face posets

All linear flag h-vector inequalities for order

complexes of face posets of CM complexes are

‘known’.

Theorem 7 (Stanley) Any linear inequality on

all f-vectors of CM complexes is a consequence

of hi ≥ 0 for all i.

Suppose ∆ is a (d − 1)-dimensional CM com-

plex and F (∆) is its face poset. Then for any

A, hA(F (∆)) can be written in terms of the

h-vector of ∆.
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Let ∆ be a (d− 1)-dimensional complex.

Exercise 1 (Stanley)

hA =
d∑

i=0

cA,i · hi,

where

cA,i = |{w ∈ Sd+1 : D(w) = A,w(d+1) = d−i+1.}|

In particular, hA is a nonnegative linear combi-

nation of the hi and hA ≤ hB for all face posets

of CM complexes if and only if

cA,i ≤ cB,i for all i.
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Example

d = 4, B = {1,2}, A = {1}

B A
[32145] [21345]
[42135] [31245]
[43125] [41235]
[52134] [51234]
[53124]
[54123]

cB,0 = cA,0 = 3

cB,1 = 2, cA,1 = 1

cB,2 = 1, cA,2 = 0
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So what is the point?

Easier conjecture: If A ⊆ R(A), then for all i,

cA,i ≤ cR(A),i.
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Other linear inequalities

Example:

In S4 consider D({1,3}) and D({1}). For any

subset X ⊆ D({1}) then number of elements π

in D({1,3}) such that π is greater than some

element σ ∈ X is at least 5
3|X|. Hence

5

3
h{1} ≤ h{1,3}.

(Rank 4 geometric lattices ...)
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