Triangle Lectures in Combinatorics

NC State University

Raleigh, NC

f-vectors, descents sets and the weak order

E. Swartz Cornell University, Ithaca, NY. Feb. 6, 2010 What do these complexes have in common?

- Order complexes
 - Distributive lattices
 - Geometric lattices
 - Face posets of CM complexes
- Finite buildings

Enumeration

 $f_i = \#$ of *i*-dimensional faces.

For order complexes this equals # of chains

 $x_0 < \cdots < x_i$

of length *i*.

 $(f_0, f_1, ..., f_{d-1})$ is the *f*-vector.

All of these complexes are completely balanced. They can be colored with d colors.

The flag *f*-vector is the set of all f_A , $A \subseteq [d]$.

 $f_A = \#$ faces whose colors equal A.

Notice

$$f_i = \sum_{|A|=i+1} f_A.$$

3

<u>h-vectors</u>

$$h_i = \sum_{j=0}^{i} (-1)^{i-j} {d-j \choose d-i} f_{j-1}.$$

Ex: If Δ is four dimensional, then d = 5 and

$$h_3 = f_2 - 3f_1 + 6f_0 - 10.$$

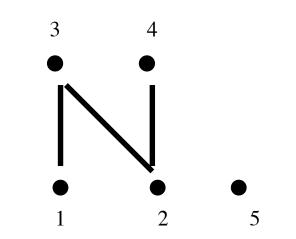
Flag h-vectors are defined by

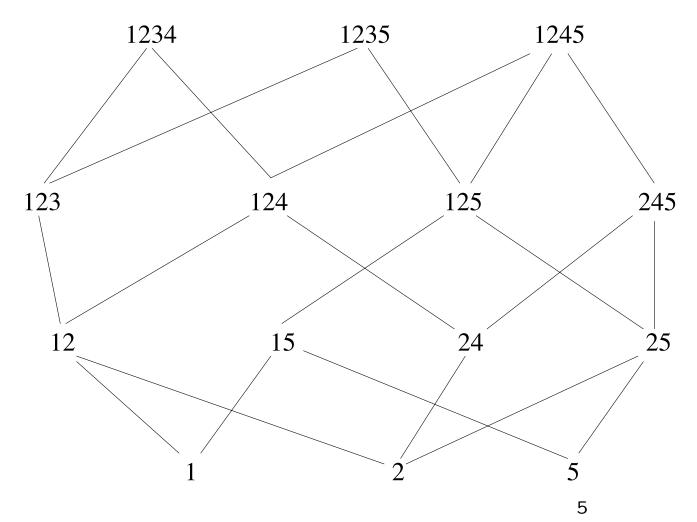
$$h_A = \sum_{B \subseteq A} (-1)^{|A-B|} f_B.$$

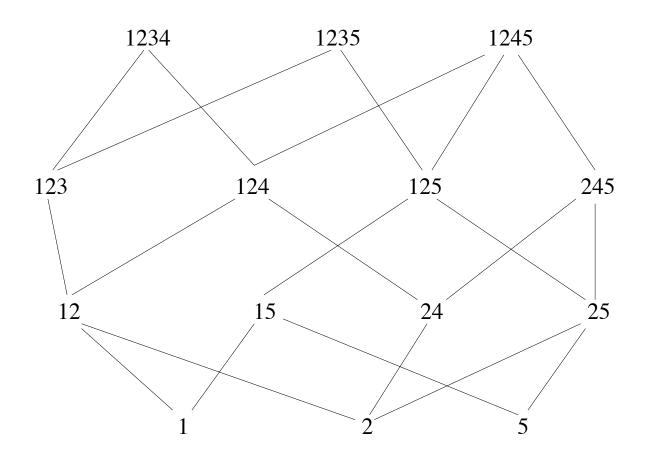
Inclusion-exclusion implies

$$\sum_{A|=i} h_A = h_i.$$

Example: A distributive lattice







$$\begin{array}{lll} f_{\emptyset} = 1 & h_{\emptyset} = 1 \\ f_{\{1\}} = 3 & f_{\{1,2\}} = 7 & h_{\{1\}} = 2 & h_{\{1,2\}} = 1 \\ f_{\{2\}} = 4 & f_{\{1,3\}} = 9 & h_{\{2\}} = 3 & h_{\{1,3\}} = 3 \\ f_{\{3\}} = 4 & f_{\{2,3\}} = 8 & h_{\{3\}} = 3 & h_{\{2,3\}} = 1 \\ f_{\{4\}} = 3 & f_{\{1,4\}} = 8 & h_{\{4\}} = 2 & h_{\{1,4\}} = 3 \\ f_{\{2,4\}} = 9 & h_{\{2,4\}} = 3 \\ f_{\{3,4\}} = 7 & h_{\{3,4\}} = 1 \end{array}$$

Theorem 1 If Δ is a finite building, order complex of a geometric lattice or the order complex of a rank selected face poset of a CM complex which does not contain the top rank, then

 $h_i \leq h_{d-i}, i \leq d/2.$

$$h_0 \leq h_1 \leq \cdots \leq h_{\lfloor d/2 \rfloor}.$$

Theorem 2 If Δ is the order complex of a distributive lattice, then

 $h_i \ge h_{d-i}, \ i \le d/2.$

 $h_d \leq h_{d-1} \leq \cdots \leq h_{d-\lfloor d/2 \rfloor}.$

The proofs of these theorems all depend on commutative algebra and the g-theorem for Coxeter complexes.

The first theorem also uses Chari's convex ear decompositions. This is a method for decomposing a complex into understandable pieces. In each case the complex can be decomposed into subcomplexes each of which is a shellable ball which is itself a subcomplex of a finite Coxeter complex.

The order complex of a distributive lattice is itself a shellable ball which is a subcomplex of a finite Coxeter complex.

The weak order

(W, S) a finite Coxeter system.

W is a finite group with generators $S = \{s_1, \ldots, s_n\}$ and relations $s_i^2 = 1, (s_i s_j)^{m_{i,j}} = 1$ for some $m_{i,j} \in \mathbb{Z}$.

l(w), the *length* of $w \in W$ is the length of the shortest word in the generators S which equals w.

 $v \leq w$ in the weak order if there exists a sequence s_{i_1}, \ldots, s_{i_j} of elements of S (not necessarily distinct) such that $v \cdot s_{i_1} \cdots s_{i_j} = w$ and l(w) = l(v) + j.

The symmetric group

Let $W = S_n$, the symmetric group on $[n] = \{1, \ldots, n\}$. Let S be the transpositions $s_i = (i, i+1)$. Then (W, S) is a Coxeter system with $m_{i,j} = 2$ if |i-j| > 1 and $m_{i,j} = 3$ if |i-j| = 1.

If v and w are elements of S_n written as words in [n], then $v \leq w$ if w can be obtained from v by switching adjacent elements which are increasing.

Example: [2134] < [2314] < [3214] in S_4 .

Descent sets

Let $w \in W$. The *descent set* of w is

$$D(w) = \{s \in S : l(ws) < l(w).\}$$

For a subset $A \subseteq S$,

$$D(A) = \{ w \in W : D(w) = A. \}$$

Symmetric group

Identify S and [n-1]. Then $D(w) = \{w : w(i) > w(i+1).\}$

Example: $D[2134] = \{1\}, D[3214] = \{1, 2\}.$

Definition 1 Let $A, B \subseteq S$. Then B dominates A from above if there exists an injection $\phi: D(A) \rightarrow D(B)$ such that for all $w \in D(A)$,

 $w \leq \phi(w).$

Definition 2 Let $A, B \subseteq S$. Then A dominates B from below if there exists an injection $\phi: D(B) \rightarrow D(A)$ such that for all $w \in D(B)$,

 $w \ge \phi(w).$

Example in S_4

 $A = \{1\}, B = \{1, 2\}.$

 $w \qquad \phi(w)$ $\begin{bmatrix} 2134 \end{bmatrix} \Rightarrow \begin{bmatrix} 3214 \end{bmatrix}$ $\begin{bmatrix} 3124 \end{bmatrix} \Rightarrow \begin{bmatrix} 4312 \end{bmatrix}$ $\begin{bmatrix} 4123 \end{bmatrix} \Rightarrow \begin{bmatrix} 4213 \end{bmatrix}$

 ϕ demonstrates that B dominates A from above.

 ϕ^{-1} demonstrates that A dominates B from below.

Easy to show that if B dominates A from above (or below) in S_n , then this also holds in all $S_m, m \ge n$. **Theorem 3** If B dominates A from above and Δ is

- The order complex of a geometric lattice $([W = S_n] Nyman, S.)$
- A finite building [W = assoc. Coxeter group] (S)
- The order complex of the face poset of a CM complex ($[W = S_n]$ Schweig)

then $h_A \leq h_B$.

Theorem 4 If Δ is the order complex of a distributive lattice and A dominates B from below, then $h_B \leq h_A$.

This follows easily from the usual S_n EL-labeling of the poset.

There is no known counterexample to the converse: If $h_B \leq h_A$ for all distributive lattices, then A dominates B from below.

Partial converse:

If $h_B \leq h_A$ for all distributive lattices, then $B \supseteq A$.

If A dominates B from below, then $B \supseteq A$.

Distributive lattice example continued

Recall in our example:

$$\begin{array}{lll} f_{\emptyset} = 1 & h_{\emptyset} = 1 \\ f_{\{1\}} = 3 & f_{\{1,2\}} = 7 & h_{\{1\}} = 2 & h_{\{1,2\}} = 1 \\ f_{\{2\}} = 4 & f_{\{1,3\}} = 9 & h_{\{2\}} = 3 & h_{\{1,3\}} = 3 \\ f_{\{3\}} = 4 & f_{\{2,3\}} = 8 & h_{\{3\}} = 3 & h_{\{2,3\}} = 1 \\ f_{\{4\}} = 3 & f_{\{1,4\}} = 8 & h_{\{4\}} = 2 & h_{\{1,4\}} = 3 \\ & f_{\{2,4\}} = 9 & & h_{\{2,4\}} = 3 \\ & f_{\{3,4\}} = 7 & & h_{\{3,4\}} = 1 \end{array}$$

We also saw that $\{1\}$ dominates $\{1,2\}$ from below in S_5 . Other pairs (A,B) with A dominating B from below in S_5 are

 $(\{2\},\{2,3\}),(\{3\},\{2,3\}),(\{4\},\{3,4\}).$

Main Problem

Problem 1 Given (W, S) determine when B dominates A from above. **Theorem 5** (*E. Chong*, 2009)

- If B dominates A from above, then $A \subseteq B$.
- Suppose s commutes with all $t \in A$. Then $A \cup \{s\}$ dominates A from above.

Products

Suppose (W_1, S_1) and (W_2, S_2) are two finite Coxeter systems, B_1 dominates A_1 from above in W_1 and B_2 dominates A_2 in (W_2, S_2) . Then it is easy to see that $B_1 \times B_2$ dominates $A_1 \times A_2$ from above.

However, the converse is false:

In $S_n \times S_m$ we see that $B \times [m-1]$ dominates $\emptyset \times A$ from above whenever |D(B)| > |D(A)|.

Symmetric group

For $w \in S_n$ let R(w) be w written in reverse. Equivalently,

$$R(w) = w \cdot [n \ n - 1 \dots 321].$$

$$D(R(w)) = \{i : n - 1 - i \notin D(w)\}$$

Define R(A) to be the common descent set of all permutations in D(A).

Conjecture 1 (Nyman - S.) If $A \subseteq R(A)$, then R(A) dominates A from above.

Verified through S_{10} by computer, and for all n with |A| = 1. (T. DeVries)

C. Boulet observed that there are no known counterexamples in S_n known for

 $A \subseteq B, |D(A)| \le |D(B)| \to$

B dominates A from above.

Other than some data generated by computer, almost nothing is known about the other irreducible finite Coxeter groups.

Variations

Let A_1, \ldots, A_m and B_1, \ldots, B_l be subsets of Swith $A_i \neq A_j$ and $B_i \neq B_j$ for $i \neq j$.

If there exists an injective map $\phi: D(A_1) \cup \cdots \cup D(A_m) \rightarrow D(B_1) \cup \cdots \cup D(B_l)$ such that $w \leq \phi(w)$ for all w, then

$$h_{A_1} + \dots + h_{A_m} \le h_{B_1} + \dots + h_{B_l}.$$

(Geometric lattices, finite buildings, face posets of CM complexes)

Example

 $A_1 = \{2\}, A_2 = \{3\}, B_1 = \{2, 3\}, B_2 = \{1, 3\}$

w	$\phi(w)$
[1243]	[2143]
[1342]	[1432]
[2341]	[2431]
[1324]	[3142]
[1423]	[4132]
[2314]	[3241]
[2413]	[4231]
[3412]	[3421]

This ϕ shows that $h_{\{2\}} + h_{\{3\}} \leq h_{\{2,3\}} + h_{\{1,3\}}$ for rank 4 geometric lattices and the reverse inequality for rank 4 distributive lattices.

Combined with the previous example gives

$$h_1 \leq h_2.$$

Theorem 6 (Nyman, S.) Using these methods it is possible to explain over 50% of the inequalities

$$h_0 \le h_1 \le \dots \le h_{\lfloor d/2 \rfloor}.$$

Earliest known form of the problem:

Problem 2 Find a bijection ϕ from elements with *i*-descents to elements with n-i descents, where n = |S|, such that $w \le \phi(w)$ for all w.

 $S_n, i = 1$: P. Edelman (unpublished ~ '99)

 $S_n, i = 1, 2$ and $B_n, i = 1$ (Yessenov ~ '05)

 $S_n, n \leq 9; B_n, n \leq 6$. (DeVries, '05 via computer)

Note: It is not instantaneously obvious how this problem behaves under product.

Face posets

All linear flag *h*-vector inequalities for order complexes of face posets of CM complexes are 'known'.

Theorem 7 (Stanley) Any linear inequality on all *f*-vectors of CM complexes is a consequence of $h_i \ge 0$ for all *i*.

Suppose Δ is a (d-1)-dimensional CM complex and $F(\Delta)$ is its face poset. Then for any A, $h_A(F(\Delta))$ can be written in terms of the h-vector of Δ .

Let Δ be a (d-1)-dimensional complex.

Exercise 1 (Stanley)

$$h_A = \sum_{i=0}^d c_{A,i} \cdot h_i,$$

where

$$c_{A,i} = |\{w \in S_{d+1} : D(w) = A, w(d+1) = d-i+1.\}|$$

In particular, h_A is a nonnegative linear combination of the h_i and $h_A \leq h_B$ for all face posets of CM complexes if and only if

$$c_{A,i} \leq c_{B,i}$$
 for all *i*.

Example

$$d = 4, B = \{1, 2\}, A = \{1\}$$

B	A
[32145]	[21345]
[42135]	[31245]
[43125]	[41235]
[52134]	[51234]
[53124]	
[54123]	

$$c_{B,0} = c_{A,0} = 3$$

 $c_{B,1} = 2, \ c_{A,1} = 1$
 $c_{B,2} = 1, \ c_{A,2} = 0$

So what is the point?

Easier conjecture: If $A \subseteq R(A)$, then for all i,

 $c_{A,i} \le c_{R(A),i}.$

Other linear inequalities

Example:

In S_4 consider $D(\{1,3\})$ and $D(\{1\})$. For any subset $X \subseteq D(\{1\})$ then number of elements π in $D(\{1,3\})$ such that π is greater than some element $\sigma \in X$ is at least $\frac{5}{3}|X|$. Hence

$$\frac{5}{3}h_{\{1\}} \le h_{\{1,3\}}.$$

(Rank 4 geometric lattices ...)