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Configuration space

The configuration space of n labelled points in the plane C(n) is defined as
follows.

Definition

C(n) = {(x1, x2, . . . , xn) | xi 2 R2, xi 6= xj} ✓ R2n

Matthew Kahle (OSU) Configuration spaces February 9, 2013



Configuration space

C(n) is an open manifold, and its topology is well understood. For example
the Poincaré polynomial is given by:

�0 + �1t + �2t
2 + · · · = (1 + t)(1 + 2t) . . . (1 + (n � 1)t).

Here �i denotes the dimension of ith homology — roughly speaking, �i
counts the number of i-dimensional holes.
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Configuration space

Our main interest is the topology of configuration space when the points
have some thickness.

Definition

Let C(n, r) denote the configuration space of all possible arrangements of
n nonoverlapping disks of radius r in some fixed bounded region R ⇢ R2.
I.e.

C(n, r) = {(x1, x2, . . . , xn) | d(xi , xj) � 2r , d(xi , @R) � r}

This can be thought of as the phase space for a hard spheres gas, so it is
of intrinsic interest in physics.
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So it seems quite natural to study the topology of C(n, r).

“We know very, very little about the topology of the set of configurations:
for fixed n, what are useful bounds on r for the space to be connected?
What are the Betti numbers? Of course, for r small this set is connected
but very little else is known. ” — Persi Diaconis, 2008
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Configuration space

Here is an alternate definition of configuration space.

For n distinct points {x1, x2, . . . , xn} in a region R let

F (x1, x2, . . . , xn) = min ({d(xi , xj)/2} [ {d(xi , @R)}) ,

where @R is the boundary of R.

Then C(n, r) = F

�1[r ,1).

This suggests a Morse-theoretic approach.
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Morse theory

“Every mathematician has a
secret weapon. Mine is Morse
theory.”

— Raoul Bott

Matthew Kahle (OSU) Configuration spaces February 9, 2013



Morse theory

f

A smooth function on a torus
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Morse theory

f

Critical points
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Morse theory

f

�0 = 1
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Morse theory

f

�0 = 1, �1 = 1
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Morse theory

f

�0 = 1, �1 = 2
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Morse theory

f

�0 = 1, �1 = 2, �2 = 1
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Topology only changes at critical points

Theorem (Morse?)

Let f : M ! R be a smooth function on a compact manifold M with

isolated non-degenerate critical points. If f

�1[r , r 0] contains no critical

points then

f

�1(�1, r) ⇠ f

�1(�1, r 0).

(Here ⇠ indicates homotopy equivalence.)
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Mechanically-balanced configurations

We say that a configuration of disks is mechanically-balanced if there exist
non-negative (and not all zero) weights cij on the edges of the contact
graph so that X

j

cij(xi � xj) = 0

at every point i .
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Characterization of critical points

Theorem

(Baryshnikov, Bubenik, K.) Let

F (x1, x2, . . . , xn) = min ({d(xi , xj)/2} [ {d(xi , @R)}) .

If F

�1[r , r 0] contains no mechanically-balanced configurations of disks then

C(n, r) ⇠ C(n, r 0).

(See “Min-type Morse theory for configuration spaces of hard spheres”,
arXiv:1108.3061, International Mathematics Resarch Notices, 2013.)
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A computational approach

(See “Computational topology for configuration spaces of hard disks,
Phys. Rev. E, Jan. 2012, joint with Gunnar Carlsson, Jackson Gorham,
and Jeremy Mason.)
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Three disks in a square: critical points
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Three disks in a square: topology

disk radius r homotopy type of C(3, r)
0.25433 < r empty

0.25000 < r  0.25433 24 points

0.20711 < r  0.25000 2 circles

0.16667 < r  0.20711 wedge of 13 circles

r  0.16667 C(3)
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Four disks in a square: critical points
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Four disks in a square: Betti numbers

radius 0.25000 0.20711 0.19231 0.18705 0.18470 0.16667 0.16019 0.12500
�3 0 0 0 0 0 0 0 6
�2 0 0 0 0 0 5 53 11
�1 0 6 97 193 97 6 6 6
�0 24 6 1 1 1 1 1 1
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Five disks in a square: nondegenerate critical points

0.1000

0.1464 0.1306 0.12500.1667

0.1686 0.1686 0.14790.16020.1667 0.16670.1681

0.17050.1942 0.16920.1871 0.1693

0.2071 0.1964 0.1705
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Five disks in a square: degenerate critical points
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Five disks in a square: histogram of nondegenerate critical
points
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Five disks in a square: Betti numbers for r > 0.1686

radius 0.2071 0.1964 0.1942 0.1871 0.1705 0.1705 0.1693 0.1692
�1 0 0 24 841 841 1321 1801 2761
�0 120 600 144 1 481 481 1 1
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Hard disks in a strip

(Joint work with Robert MacPherson.)

Let C(n,w) denote the configuration space of n disks in an infinite strip w

disks wide.
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Hard disks in a strip: asymptotic results for �
j

(n)

Theorem (K. and MacPherson)

Fix the width w � 2 and degree j � 1, and let the number of disks n ! 1.

1
If j < w � 2 then �j grows polynomially with n. In particular

lim
n!1

log �j
log n

= 2j .

2
If j � w � 2 then �j grows exponentially with n. In particular

lim
n!1

log �j
n

= log

✓�
j

w � 1

⌫
+ 1

◆
.

(Preprint in preparation.)
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Hard disks in a strip: asymptotic results for �
j

(n)

= stable regime

w
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Hard disks in a strip: a cell structure
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Hard disks in a strip: a cell structure
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Upper bounds

The cell structure gives upper bounds on the Betti numbers, via discrete
Morse theory.

The “discrete gradient vector field” is built algorithmically.

If every disk in column ci has a smaller label then the top disk in column

ci+1 and the total height of the two columns is  w , then one can

potentially stack column ci on top of column ci+1.

We match 0-cells to 1-cells, 1-cells to 2-cells, etc., always stacking the
leftmost column allowable. (And only matching cells which are not already
from below!)

Checking that this discrete vector field is well-defined and gradient involves
some delicate combinatorics...
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Upper bounds

In particular which cells get matched depends the width of the strip w .
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Lower bounds

The essentially matching lower bounds comes from geometric arguments
— namely finding submanifolds which represent nontrivial (and linearly
independent) homology classes...
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Open questions

1 Describe the asymptotics of the Betti numbers �k as n ! 1, for your
favorite compact region R. Statistical unimodality of Betti numbers?
Concentration of homology in a small number of degrees?

2 What is the threshold for connectivity r = r(n) as n ! 1?

3 Geometric questions — diameter, etc.?

4 Understanding statistical-mechanical phase transitions topologically.
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