Balanced and Unbalanced Collections

Louis J. Billera
Cornell University

TLC Wake Forest, February 9, 2013
1. Balanced and Unbalanced Collections
 - Balanced Collections – Economic Equilibria
 - Unbalanced Collections - Quantum Field Theory
 - Poset structure of maximal unbalanced collections (Björner)

2. Hyperplane Arrangements and Unbalanced Collections
 - All-subset arrangements
 - Lower bounds on the number of unbalanced collections
 - Upper bounds on the number of unbalanced collections
 - Threshold collections and threshold functions

3. Some Questions
For \(S \subseteq [n] = \{1, 2, \ldots, n\} \), let \(e_S := \sum_{i \in S} e_i \), where \(e_i = (0, \ldots, 1, \ldots, 0) \) is the \(i^{th} \) unit vector in \(\mathbb{R}^n \).
For $S \subseteq [n] = \{1, 2, \ldots, n\}$, let $e_S := \sum_{i \in S} e_i$, where $e_i = (0, \ldots, 1, \ldots, 0)$ is the i^{th} unit vector in \mathbb{R}^n.

A collection $\mathcal{F} \subseteq 2^{[n]}$ is said to be balanced if

$$
\delta \cdot e_{[n]} \in \text{conv}\{e_S \mid S \in \mathcal{F}\}
$$

for some $0 < \delta \leq 1$.
For $S \subseteq [n] = \{1, 2, \ldots, n\}$, let $e_S := \sum_{i \in S} e_i$, where $e_i = (0, \ldots, 1, \ldots, 0)$ is the i^{th} unit vector in \mathbb{R}^n.

A collection $\mathcal{F} \subseteq 2^{[n]}$ is said to be balanced if

$$\delta \cdot e_{[n]} \in \text{conv}\{e_S \mid S \in \mathcal{F}\}$$

for some $0 < \delta \leq 1$.

Equivalently, \mathcal{F} is balanced if the convex hull of the vertices of the cube $[0, 1]^n$ corresponding to the sets in \mathcal{F} meets the diagonal.
For $S \subseteq [n] = \{1, 2, \ldots, n\}$, let $e_S := \sum_{i \in S} e_i$, where $e_i = (0, \ldots, 1, \ldots, 0)$ is the i^{th} unit vector in \mathbb{R}^n.

A collection $\mathcal{F} \subseteq 2^{[n]}$ is said to be *balanced* if

$$\delta \cdot e_{[n]} \in \text{conv}\{e_S \mid S \in \mathcal{F}\}$$

for some $0 < \delta \leq 1$.

Equivalently, \mathcal{F} is balanced if the convex hull of the vertices of the cube $[0, 1]^n$ corresponding to the sets in \mathcal{F} meets the diagonal.

Example:
1) \mathcal{F} any partition of $[n]$
For $S \subseteq [n] = \{1, 2, \ldots, n\}$, let $e_S := \sum_{i \in S} e_i$, where $e_i = (0, \ldots, 1, \ldots, 0)$ is the i^{th} unit vector in \mathbb{R}^n.

A collection $\mathcal{F} \subseteq 2^{[n]}$ is said to be balanced if

$$\delta \cdot e_{[n]} \in \text{conv}\{e_S \mid S \in \mathcal{F}\}$$

for some $0 < \delta \leq 1$.

Equivalently, \mathcal{F} is balanced if the convex hull of the vertices of the cube $[0, 1]^n$ corresponding to the sets in \mathcal{F} meets the diagonal.

Example:
1) \mathcal{F} any partition of $[n]$
2) $\mathcal{F} = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}$ in $\{1, 2, 3\}$
Balanced Collections

For $S \subseteq [n] = \{1, 2, \ldots, n\}$, let $e_S := \sum_{i \in S} e_i$, where $e_i = (0, \ldots, 1, \ldots, 0)$ is the i^{th} unit vector in \mathbb{R}^n.

A collection $\mathcal{F} \subseteq 2^{[n]}$ is said to be balanced if

$$\delta \cdot e_{[n]} \in \text{conv}\{e_S \mid S \in \mathcal{F}\}$$

for some $0 < \delta \leq 1$.

Equivalently, \mathcal{F} is balanced if the convex hull of the vertices of the cube $[0, 1]^n$ corresponding to the sets in \mathcal{F} meets the diagonal.

Example:
1) \mathcal{F} any partition of $[n]$
2) $\mathcal{F} = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}$ in $\{1, 2, 3\}$
3) $\binom{[n]}{k}$ in $[n]$
Balanced collections were introduced 50 years ago by Lloyd Shapley (Nobel Prize in Economics, 2012) to characterize when cooperative games (with transferable utility) were robust enough (so-called balanced games) to ensure that players could be paid enough to guarantee that no subset could do better by leaving the coalition of everyone.
Balanced collections were introduced 50 years ago by Lloyd Shapley (Nobel Prize in Economics, 2012) to characterize when cooperative games (with transferable utility) were robust enough (so-called balanced games) to ensure that players could be paid enough to guarantee that no subset could do better by leaving the coalition of everyone.

Shortly afterward, Herb Scarf generalized Shapley’s result to the nontransferable utility case, introducing what has come to be known as the Scarf complex in the proof.
Balanced collections were introduced 50 years ago by Lloyd Shapley (Nobel Prize in Economics, 2012) to characterize when cooperative games (with transferable utility) were robust enough (so-called balanced games) to ensure that players could be paid enough to guarantee that no subset could do better by leaving the coalition of everyone.

Shortly afterward, Herb Scarf generalized Shapley’s result to the nontransferable utility case, introducing what has come to be known as the Scarf complex in the proof.

Shapley and Shubik showed that games balanced in all restrictions were precisely those games coming from economic trading models.
Balanced collections were introduced 50 years ago by Lloyd Shapley (Nobel Prize in Economics, 2012) to characterize when cooperative games (with transferable utility) were robust enough (so-called balanced games) to ensure that players could be paid enough to guarantee that no subset could do better by leaving the coalition of everyone.

Shortly afterward, Herb Scarf generalized Shapley’s result to the nontransferable utility case, introducing what has come to be known as the Scarf complex in the proof.

Shapley and Shubik showed that games balanced in all restrictions were precisely those games coming from economic trading models.

Your speaker spent many years trying to generalize this to the nontransferable utility case, with some but not complete success.
A **cooperative game** (with transferable utility) is a function

\[v : 2^{[n]} \to \mathbb{R} \]
A cooperative game (with transferable utility) is a function

\[v : 2^{[n]} \to \mathbb{R} \]

where, for \(S \subseteq [n] \), \(v(S) \) is the amount that the coalition \(S \) can assure itself by the rules of the game
A cooperative game (with transferable utility) is a function

$$v : 2^{[n]} \rightarrow \mathbb{R}$$

where, for $$S \subseteq [n]$$, $$v(S)$$ is the amount that the coalition $$S$$ can assure itself by the rules of the game – the idea being that whatever benefit can be achieved by members of the group can be redistributed to any or all its members (transferable utility):
A **cooperative game** (with transferable utility) is a function

$$v : 2^{[n]} \to \mathbb{R}$$

where, for $S \subseteq [n]$, $v(S)$ is the amount that the *coalition* S can assure itself by the rules of the game – the idea being that whatever benefit can be achieved by members of the group can be redistributed to any or all its members (*transferable utility*):

i.e., any $x \in \mathbb{R}^n$ with $\sum_{i \in [n]} x_i = v([n])$ is a possible outcome.
A cooperative game (with transferable utility) is a function

\[v : 2^{[n]} \to \mathbb{R} \]

where, for \(S \subseteq [n] \), \(v(S) \) is the amount that the coalition \(S \) can assure itself by the rules of the game – the idea being that whatever benefit can be achieved by members of the group can be redistributed to any or all its members (transferable utility):

i.e., any \(x \in \mathbb{R}^n \) with \(\sum_{i \in [n]} x_i = v([n]) \) is a possible outcome.

The core of \(v \) is the set of outcomes for which no coalition \(S \subset [n] \) can do better for all its members:

\[
\left\{ x \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = v([n]), \quad \sum_{i \in S} x_i \geq v(S) \text{ for all } S \subset [n] \right\}
\]
For some games, the core may be empty:

Theorem (Shapley-Bondareva): A game \(v \) on \([n] \) has a nonempty core \(\iff \) \(v \) is balanced: for every minimal balanced collection \(F \), if \(e[n] = \sum_{S \in F} \delta_S e_S \) then \(v([n]) \geq \sum_{S \in F} \delta_S v(S) \).

Theorem (Shapley-Shubik): A game \(v \) on \([n] \) arises from an economic trading model with convex preferences \(\iff \) for each \(S \subseteq [n] \), the subgame \(v|_S \) on \(S \) is balanced (has a nonempty core).

Note: In the NTU case, where \(V(S) \) is a set in place of a number, \(\text{market} \Rightarrow \text{balanced} \Rightarrow \text{core nonempty} \) still holds (with inclusion and set sums) [Scarf], while the converse of the second (balanced \(\Rightarrow \) market) has been proved in many, but not all, cases [B, et al.].
Shapley-Bondareva Theorem

For some games, the core may be empty:

- the general rule of thumb is that games arising from \textit{economic} situations often have \textit{nonempty cores}
For some games, the core may be empty:

- the general rule of thumb is that games arising from economic situations often have nonempty cores
- while those arising from political considerations will have empty cores

Theorem (Shapley-Bondareva): A game v on \mathbb{N} has a nonempty core $\iff v$ is balanced: for every minimal balanced collection F, if $e[\mathbb{N}] = \sum_{S \in F} \delta_S e_S$ then $v(\mathbb{N}) \geq \sum_{S \in F} \delta_S v(S)$.

Theorem (Shapley-Shubik): A game v on \mathbb{N} arises from a economic trading model with convex preferences \iff for each $S \subseteq \mathbb{N}$, the subgame $v|_S$ on S is balanced (has a nonempty core).

Note: In the NTU case, where $V(S)$ is a set in place of a number, market \Rightarrow balanced \Rightarrow core nonempty still holds (with inclusion and set sums) [Scarf], while the converse of the second (balanced \Rightarrow market) has been proved in many, but not all, cases [B et al.].
Shapley-Bondareva Theorem

For some games, the core may be empty:

- the general rule of thumb is that games arising from economic situations often have nonempty cores

- while those arising from political considerations will have empty cores unless there is a ruling clique (which takes it all).
For some games, the core may be empty:

- the general rule of thumb is that games arising from economic situations often have nonempty cores
- while those arising from political considerations will have empty cores unless there is a ruling clique (which takes it all).

Theorem (Shapley-Bondareva): A game v on $[n]$ has a nonempty core \iff v is balanced:

Note: In the NTU case, where $V(S)$ is a set in place of a number, market \Rightarrow balanced \Rightarrow core nonempty still holds (with inclusion and set sums) [Scarf], while the converse of the second (balanced \Rightarrow market) has been proved in many, but not all, cases [B, et al.].
Shapley-Bondareva Theorem

For some games, the core may be empty:

- the general rule of thumb is that games arising from economic situations often have nonempty cores
- while those arising from political considerations will have empty cores unless there is a ruling clique (which takes it all).

Theorem (Shapley-Bondareva): A game v on $[n]$ has a nonempty core $\iff v$ is balanced: for every minimal balanced collection \mathcal{F}, if $e[n] = \sum_{S \in \mathcal{F}} \delta_S e_S$ then $v([n]) \geq \sum_{S \in \mathcal{F}} \delta_S v(S)$.

Theorem (Shapley-Shubik): A game v on $[n]$ arises from an economic trading model with convex preferences \iff for each $S \subseteq [n]$, the subgame $v|_S$ on S is balanced (has a nonempty core).

Note: In the NTU case, where $V(S)$ is a set in place of a number, market \Rightarrow balanced \Rightarrow core nonempty still holds (with inclusion and set sums) [Scarf], while the converse of the second (balanced \Rightarrow market) has been proved in many, but not all, cases [B, et al.].
For some games, the core may be empty:

- the general rule of thumb is that games arising from economic situations often have nonempty cores
- while those arising from political considerations will have empty cores unless there is a ruling clique (which takes it all).

Theorem (Shapley-Bondareva): A game v on $[n]$ has a nonempty core $\iff v$ is balanced: for every minimal balanced collection \mathcal{F},

$$e[n] = \sum_{S \in \mathcal{F}} \delta_S e_S \text{ then } v([n]) \geq \sum_{S \in \mathcal{F}} \delta_S v(S).$$

Theorem (Shapley-Shubik): A game v on $[n]$ arises from an economic trading model with convex preferences \iff for each $S \subseteq [n]$, the subgame $v|_S$ on S is balanced (has a nonempty core).
For some games, the core may be empty:

- the general rule of thumb is that games arising from economic situations often have nonempty cores
- while those arising from political considerations will have empty cores unless there is a ruling clique (which takes it all).

Theorem (Shapley-Bondareva): A game \(v \) on \([n]\) has a nonempty core \(\iff\) \(v \) is balanced: for every minimal balanced collection \(\mathcal{F} \),

\[
e_{[n]} = \sum_{S \in \mathcal{F}} \delta_S e_S \quad \text{then} \quad v([n]) \geq \sum_{S \in \mathcal{F}} \delta_S v(S).
\]

Theorem (Shapley-Shubik): A game \(v \) on \([n]\) arises from an economic trading model with convex preferences \(\iff\) for each \(S \subseteq [n], \) the subgame \(v|_S \) on \(S \) is balanced (has a nonempty core).

Note: In the NTU case, where \(V(S) \) is a set in place of a number, market \(\Rightarrow\) balanced \(\Rightarrow\) core nonempty still holds (with inclusion and set sums) [Scarf], while the converse of the second (balanced \(\Rightarrow\) market) has been proved in many, but not all, cases [B _, et al.].
A collection is said to be *unbalanced* if it is not balanced.
A collection is said to be *unbalanced* if it is not balanced.

Unbalanced collections form an order ideal in the Boolean lattice $2^{[n]}$, under the inclusion order on collections.
A collection is said to be *unbalanced* if it is not balanced.

Unbalanced collections form an order ideal in the Boolean lattice $2^{[n]}$, under the inclusion order on collections. We are interested in collections \mathcal{F} that are maximal in this order, the *maximal unbalanced collections*.

Basic linear alternative theorem: Either \mathcal{F} is balanced or $\exists w \in \mathbb{R}^n$, with $\sum_{i \in [n]} w_i = 0$ and $\sum_{i \in S} w_i > 0$ for $S \in \mathcal{F}$.

Thus maximal unbalanced collections are the same as Björner's PSS (positive set sum) systems. We are interested in enumerating these collections.
A collection is said to be *unbalanced* if it is not balanced.

Unbalanced collections form an order ideal in the Boolean lattice $2^{[n]}$, under the inclusion order on collections. We are interested in collections \mathcal{F} that are maximal in this order, the *maximal unbalanced collections*.

Basic linear alternative theorem:
Either \mathcal{F} is balanced
A collection is said to be *unbalanced* if it is not balanced.

Unbalanced collections form an *order ideal* in the Boolean lattice 2^{2^n}, under the *inclusion order* on collections. We are interested in collections \mathcal{F} that are maximal in this order, the *maximal unbalanced collections*.

Basic linear alternative theorem:
Either \mathcal{F} is balanced
Or
A collection is said to be *unbalanced* if it is not balanced.

Unbalanced collections form an order ideal in the Boolean lattice $2^{[n]}$, under the inclusion order on collections. We are interested in collections \mathcal{F} that are maximal in this order, the maximal unbalanced collections.

Basic linear alternative theorem:
Either \mathcal{F} is balanced
Or $\exists w \in \mathbb{R}^n$, with $\sum_{i \in [n]} w_i = 0$ and $\sum_{i \in S} w_i > 0$ for $S \in \mathcal{F}$.
A collection is said to be *unbalanced* if it is not balanced.

Unbalanced collections form an *order ideal* in the Boolean lattice 2^{2^n}, under the *inclusion order* on collections. We are interested in collections \mathcal{F} that are maximal in this order, the *maximal unbalanced collections*.

Basic linear alternative theorem:
Either \mathcal{F} is balanced
Or $\exists w \in \mathbb{R}^n$, with $\sum_{i \in [n]} w_i = 0$ and $\sum_{i \in S} w_i > 0$ for $S \in \mathcal{F}$.

Thus *maximal unbalanced collections* are the same as Björner’s PSS (positive set sum) systems.
A collection is said to be *unbalanced* if it is not balanced.

Unbalanced collections form an order ideal in the Boolean lattice $2^{[n]}$, under the inclusion order on collections. We are interested in collections \mathcal{F} that are maximal in this order, the *maximal unbalanced collections*.

Basic linear alternative theorem:
Either \mathcal{F} is balanced
Or $\exists w \in \mathbb{R}^n$, with $\sum_{i \in [n]} w_i = 0$ and $\sum_{i \in S} w_i > 0$ for $S \in \mathcal{F}$.

Thus maximal unbalanced collections are the same as Björner’s PSS (positive set sum) systems.

We are interested in enumerating these collections.
Unbalanced collections arise in thermal field theory
Applications to Physics

Unbalanced collections arise in

thermal field theory = quantum field theory + statistical mechanics

in mathematical physics.
Unbalanced collections arise in thermal field theory = quantum field theory + statistical mechanics in mathematical physics.

Maximal unbalanced collections \leftrightarrow Feynman diagrams;
Unbalanced collections arise in

\textit{thermal field theory} = \textit{quantum field theory} + \textit{statistical mechanics}

in mathematical physics.

\textbf{Maximal unbalanced collections} \leftrightarrow Feynman diagrams;

a certain power series approximation will not converge if there are too many of these.
Unbalanced collections arise in

thermal field theory = quantum field theory + statistical mechanics

in mathematical physics.

Maximal unbalanced collections ←→ Feynman diagrams;

a certain power series approximation will not converge if there are too many of these. This number has been computed through n=9:
Unbalanced collections arise in

thermal field theory = quantum field theory + statistical mechanics

in mathematical physics.

Maximal unbalanced collections \leftrightarrow Feynman diagrams;

a certain power series approximation will not converge if there are too many of these. This number has been computed through \(n = 9 \):

\[
\begin{array}{cccccccc}
2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 6 & 32 & 370 & 11,292 & 1,066,044 & 347,326,352 & 419,172,756,930 \\
\end{array}
\]
Unbalanced collections arise in

thermal field theory = quantum field theory + statistical mechanics

in mathematical physics.

Maximal unbalanced collections \(\leftrightarrow\) Feynman diagrams;

a certain power series approximation will not converge if there are too many of these. This number has been computed through \(n=9\):

\[
\begin{array}{cccccccc}
2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 6 & 32 & 370 & 11,292 & 1,066,044 & 347,326,352 & 419,172,756,930 \\
\end{array}
\]

Driving in Sicily!
A few examples

For $n = 3$, the 6 maximal unbalanced collections are

$$\left\{ \{1, 2\}, \{1, 3\}, \{1\} \right\}, \left\{ \{1, 2\}, \{2, 3\}, \{2\} \right\}, \left\{ \{1, 3\}, \{2, 3\}, \{3\} \right\}$$

$$\left\{ \{2\}, \{3\}, \{2, 3\} \right\}, \left\{ \{1\}, \{3\}, \{1, 3\} \right\}, \left\{ \{1\}, \{2\}, \{1, 2\} \right\}$$

For weight vectors $w = (2, -1, -1)$ and $w = (-2, 1, 1)$.

For $n = 4$, two of the 32 such collections are

$$\left\{ \{1\} \right\}, \left\{ \{1\}, \{2\} \right\}, \left\{ \{1\}, \{3\} \right\}, \left\{ \{1\}, \{4\} \right\}, \left\{ \{1\}, \{2\}, \{3\} \right\}, \left\{ \{1\}, \{2\}, \{4\} \right\}, \left\{ \{1\}, \{3\}, \{4\} \right\}$$
For $n = 3$, the 6 maximal unbalanced collections are

\[
\begin{align*}
\left\{ \{1, 2\}, \{1, 3\}, \{1\} \right\}, & \left\{ \{1, 2\}, \{2, 3\}, \{2\} \right\}, & \left\{ \{1, 3\}, \{2, 3\}, \{3\} \right\} \\
& \left\{ \{2\}, \{3\}, \{2, 3\} \right\}, & \left\{ \{1\}, \{3\}, \{1, 3\} \right\}, & \left\{ \{1\}, \{2\}, \{1, 2\} \right\}
\end{align*}
\]

e.g., for weight vectors $w = (2, -1, -1)$ and $w = (-2, 1, 1)$.

A few examples

For \(n = 3 \), the 6 maximal unbalanced collections are

\[
\{\{1, 2\}, \{1, 3\}, \{1\}\}, \{\{1, 2\}, \{2, 3\}, \{2\}\}, \{\{1, 3\}, \{2, 3\}, \{3\}\}, \\
\{\{2\}, \{3\}, \{2, 3\}\}, \{\{1\}, \{3\}, \{1, 3\}\}, \{\{1\}, \{2\}, \{1, 2\}\}
\]

e.g., for weight vectors \(w = (2, -1, -1) \) and \(w = (-2, 1, 1) \).

For \(n = 4 \), two of the 32 such collections are

\[
\{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}\}
\]

and

\[
\{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{2\}\}
\]
A few examples

For $n = 3$, the 6 maximal unbalanced collections are

\[
\begin{align*}
\{\{1, 2\}, \{1, 3\}, \{1\}\}, & \{\{1, 2\}, \{2, 3\}, \{2\}\}, & \{\{1, 3\}, \{2, 3\}, \{3\}\} \\
\{\{2\}, \{3\}, \{2, 3\}\}, & \{\{1\}, \{3\}, \{1, 3\}\}, & \{\{1\}, \{2\}, \{1, 2\}\}
\end{align*}
\]

e.g., for weight vectors $w = (2, -1, -1)$ and $w = (-2, 1, 1)$.

For $n = 4$, two of the 32 such collections are

\[
\begin{align*}
\{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}\}
\end{align*}
\]

and

\[
\begin{align*}
\{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{2\}\}
\end{align*}
\]

for weight vectors $w = (3, -1, -1, -1)$ and $w = (3, 1, -2, -2)$.
Björner has studied the **poset structure** of maximal unbalanced collections $\mathcal{F} \subset 2^{[n]}$ (under set inclusion)
Björner has studied the *poset structure* of maximal unbalanced collections $\mathcal{F} \subset 2^n$ (under set inclusion)

- they always have $2^{n-1} - 1$ sets and rank $n - 2$ with $(n - 1)!$ maximal chains.
Björner has studied the poset structure of maximal unbalanced collections $\mathcal{F} \subset 2^{[n]}$ (under set inclusion)

- they always have $2^{n-1} - 1$ sets and rank $n - 2$ with $(n - 1)!$ maximal chains.
- their order complexes are always shellable balls with a single interior vertex
Björner has studied the **poset structure** of maximal unbalanced collections \(\mathcal{F} \subset 2^{[n]} \) (under set inclusion)

- they always have \(2^{n-1} - 1 \) sets and rank \(n - 2 \) with \((n - 1)! \) maximal chains.
- their order complexes are always **shellable balls** with a single interior vertex
- their \(f \)-vectors are all the **same**;
Björner has studied the **poset structure** of maximal unbalanced collections $\mathcal{F} \subset 2^{[n]}$ (under set inclusion)

- they always have $2^{n-1} - 1$ sets and rank $n - 2$ with $(n - 1)!$ maximal chains.
- their order complexes are always **shellable balls** with a single interior vertex
- their f-vectors are all the same; in fact, $h_i(\Delta(\mathcal{F}))$ is the number of permutations in S_{n-1} with i descents (classical Eulerian numbers).
The simplicial complex $\Delta(\mathcal{F})$

Examples:
The simplicial complex $\Delta(\mathcal{F})$

Examples: $n = 3$
The simplicial complex $\Delta(\mathcal{F})$

Examples: $n = 3$ For the collections

$\{\{1, 2\}, \{1, 3\}, \{1\}\}$ and $\{\{1\}, \{2\}, \{1, 2\}\}$
The simplicial complex $\Delta(\mathcal{F})$

Examples: $n = 3$ For the collections

\[
\left\{ \{1, 2\}, \{1, 3\}, \{1\} \right\} \quad \text{and} \quad \left\{ \{1\}, \{2\}, \{1, 2\} \right\}
\]
The simplicial complex $\Delta(\mathcal{F})$
The simplicial complex $\Delta(\mathcal{F})$

$n = 4$: For the collections
$n = 4$: For the collections

$$\left\{ \{1\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\} \right\}$$

$$\left\{ \{1\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{2\} \right\}$$
The simplicial complex $\Delta(\mathcal{F})$

$n = 4$: For the collections

$$\left\{ \{1\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\} \right\}$$

$$\left\{ \{1\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{2\} \right\}$$

we get
The simplicial complex $\Delta(\mathcal{F})$

\[n = 4: \text{ For the collections} \]

\[
\left\{ \{1\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\} \right\}
\]

\[
\left\{ \{1\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{2\} \right\}
\]

we get

Here both have $f(\Delta) = (7, 12, 6)$ and a single interior vertex.
Recall: $\mathcal{F} \subset 2^{[n]}$ is unbalanced \iff
$\exists w \in \mathbb{R}^n$, with $\sum_{i \in [n]} w_i = 0$ and $\sum_{i \in S} w_i > 0$ for $S \in \mathcal{F}$.

Restricted all-subset arrangement in \mathbb{R}^n
Restricted all-subset arrangement in \mathbb{R}^n

Recall: $\mathcal{F} \subset 2^{[n]}$ is unbalanced $\iff \exists w \in \mathbb{R}^n$, with $\sum_{i \in [n]} w_i = 0$ and $\sum_{i \in S} w_i > 0$ for $S \in \mathcal{F}$.

This defines a hyperplane arrangement in \mathbb{R}^n,

Recall: $\mathcal{F} \subset 2^{[n]}$ is unbalanced \iff
$\exists w \in \mathbb{R}^n$, with $\sum_{i \in [n]} w_i = 0$ and $\sum_{i \in S} w_i > 0$ for $S \in \mathcal{F}$.

This defines a hyperplane arrangement in \mathbb{R}^n, actually on the hyperplane $H_0 := \{x \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = 0\}$ (the space of all possible w’s),
Recall: $\mathcal{F} \subset 2^{[n]}$ is unbalanced $\iff \exists w \in \mathbb{R}^n$, with $\sum_{i \in [n]} w_i = 0$ and $\sum_{i \in S} w_i > 0$ for $S \in \mathcal{F}$.

This defines a hyperplane arrangement in \mathbb{R}^n, actually on the hyperplane $H_0 := \{ x \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = 0 \}$ (the space of all possible w's), called the **restricted all subsets arrangement**, with all the hyperplanes having normals e_S, $S \subset [n], S \neq \emptyset, [n]$.
Restricted all-subset arrangement in \mathbb{R}^n

Recall: $\mathcal{F} \subset 2^{[n]}$ is unbalanced $\iff \exists w \in \mathbb{R}^n$, with $\sum_{i \in [n]} w_i = 0$ and $\sum_{i \in S} w_i > 0$ for $S \in \mathcal{F}$.

This defines a hyperplane arrangement in \mathbb{R}^n, actually on the hyperplane $H_0 := \{x \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = 0\}$ (the space of all possible w’s), called the restricted all subsets arrangement, with all the hyperplanes having normals e_S, $S \subset [n]$, $S \neq \emptyset, [n]$.

The maximal (full-dimensional) regions in this arrangement are in bijection with the maximal unbalanced collections in $2^{[n]}$.
Recall: $\mathcal{F} \subset 2^{[n]}$ is unbalanced $\iff \exists w \in \mathbb{R}^n$, with $\sum_{i \in [n]} w_i = 0$ and $\sum_{i \in S} w_i > 0$ for $S \in \mathcal{F}$.

This defines a hyperplane arrangement in \mathbb{R}^n, actually on the hyperplane $H_0 := \{ x \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = 0 \}$ (the space of all possible w’s), called the restricted all subsets arrangement, with all the hyperplanes having normals $e_S, S \subset [n], S \neq \emptyset, [n]$.

The maximal (full-dimensional) regions in this arrangement are in bijection with the maximal unbalanced collections in $2^{[n]}$.

Restricted to H_0, the hyperplanes corresponding to S and $[n] \setminus S$ are the same, so there are $2^{n-1} - 1$ hyperplanes in this arrangement,
Recall: $\mathcal{F} \subset 2^{[n]}$ is unbalanced $\iff \exists w \in \mathbb{R}^n$, with $\sum_{i \in [n]} w_i = 0$ and $\sum_{i \in S} w_i > 0$ for $S \in \mathcal{F}$.

This defines a hyperplane arrangement in \mathbb{R}^n, actually on the hyperplane $H_0 := \{x \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = 0\}$ (the space of all possible w’s), called the restricted all subsets arrangement, with all the hyperplanes having normals $e_S, S \subset [n], S \neq \emptyset, [n]$.

The maximal (full-dimensional) regions in this arrangement are in bijection with the maximal unbalanced collections in $2^{[n]}$.

Restricted to H_0, the hyperplanes corresponding to S and $[n] \setminus S$ are the same, so there are $2^{n-1} - 1$ hyperplanes in this arrangement, and so $2^{n-1} - 1$ sets in any maximal unbalanced collection.
All-subset arrangement in \mathbb{R}^{n-1}

Combinatorially equivalent to the restricted all-subset arrangement in \mathbb{R}^n is the all-subset arrangement \mathcal{A}_{n-1} in \mathbb{R}^{n-1}, consisting of all hyperplanes with normals e_S, $S \subseteq [n-1], S \neq \emptyset$.
All-subset arrangement in \mathbb{R}^{n-1}

Combinatorially equivalent to the restricted all-subset arrangement in \mathbb{R}^n is the all-subset arrangement \mathcal{A}_{n-1} in \mathbb{R}^{n-1}, consisting of all hyperplanes with normals e_S, $S \subseteq [n-1]$, $S \neq \emptyset$.

Again, regions of \mathcal{A}_{n-1} are in bijection with maximal unbalanced collections in $2^{[n]}$.

Example: $n = 3$. The planes of \mathcal{A}_2 are $x_1 = 0$, $x_2 = 0$, $x_1 + x_2 = 0$, so \mathcal{A}_2 has 6 regions:
All-subset arrangement in \mathbb{R}^{n-1}

Combinatorially equivalent to the restricted all-subset arrangement in \mathbb{R}^n is the all-subset arrangement \mathcal{A}_{n-1} in \mathbb{R}^{n-1}, consisting of all hyperplanes with normals $e_S, S \subseteq [n-1], S \neq \emptyset$.

Again, regions of \mathcal{A}_{n-1} are in bijection with maximal unbalanced collections in $2^{[n]}$.

Example: $n = 3$. The planes of \mathcal{A}_2 are $x_1 = 0, x_2 = 0, x_1 + x_2 = 0$, so \mathcal{A}_2 has 6 regions:
All-subset arrangement in \mathbb{R}^{n-1}

Combinatorially equivalent to the restricted all-subset arrangement in \mathbb{R}^n is the all-subset arrangement \mathcal{A}_{n-1} in \mathbb{R}^{n-1}, consisting of all hyperplanes with normals e_S, $S \subseteq [n-1]$, $S \neq \emptyset$.

Again, regions of \mathcal{A}_{n-1} are in bijection with maximal unbalanced collections in $2^{[n]}$.

Example: $n = 3$. The planes of \mathcal{A}_2 are $x_1 = 0$, $x_2 = 0$, $x_1 + x_2 = 0$, so \mathcal{A}_2 has 6 regions:
A_3 has 7 planes and 32 regions
A_3 has 7 planes and 32 regions
To count the regions in A_n, we use the theorem of Zaslavsky.
To count the regions in A_n, we use the theorem of Zaslavsky. Recall the characteristic polynomial of A_n is defined by

$$
\chi(A_n, t) = \sum_{x \in L_n} \mu(0, x) \ t^{\text{rank}(L_n) - \text{rank}(x)} = \sum_{k=0}^{n} w_k(L_n) \ t^{n-k}
$$

($L_n =$ lattice of flats of A_n)
To count the regions in \mathcal{A}_n, we use the theorem of Zaslavsky. Recall the characteristic polynomial of \mathcal{A}_n is defined by

$$
\chi(\mathcal{A}_n, t) = \sum_{x \in L_n} \mu(0, x) \ t^{\text{rank}(L_n) - \text{rank}(x)} = \sum_{k=0}^{n} w_k(L_n) \ t^{n-k}
$$

($L_n = \text{lattice of flats of } \mathcal{A}_n$) so the number of maximal regions of \mathcal{A}_n is
Lower bounds on regions in \mathcal{A}_n

To count the regions in \mathcal{A}_n, we use the theorem of Zaslavsky. Recall the characteristic polynomial of \mathcal{A}_n is defined by

$$\chi(\mathcal{A}_n, t) = \sum_{x \in L_n} \mu(0, x) \ t^{\text{rank}(L_n) - \text{rank}(x)} = \sum_{k=0}^{n} w_k(L_n) \ t^{n-k}$$

($L_n = \text{lattice of flats of } \mathcal{A}_n$) so the number of maximal regions of \mathcal{A}_n is

$$(-1)^n \chi(\mathcal{A}_n, -1) = \sum_{x \in L_n} |\mu(0, x)| = \sum_{k=0}^{n} |w_k(L_n)|.$$
To count the regions in A_n, we use the theorem of Zaslavsky. Recall the characteristic polynomial of A_n is defined by

$$
\chi(A_n, t) = \sum_{x \in L_n} \mu(0, x) t^{\text{rank}(L_n) - \text{rank}(x)} = \sum_{k=0}^{n} w_k(L_n) t^{n-k}
$$

($L_n = \text{lattice of flats of } A_n$) so the number of maximal regions of A_n is

$$
(-1)^n \chi(A_n, -1) = \sum_{x \in L_n} |\mu(0, x)| = \sum_{k=0}^{n} |w_k(L_n)|.
$$

Unfortunately, we don’t know $\chi(A_n, t)$.
Consider the binary matroid \mathcal{A}_n^2 consisting of all subspaces spanned over the 2-element field \mathbb{F}_2 by all the nonzero elements of $\{0, 1\}^n$.\vspace{1cm}
Consider the binary matroid A_n^2 consisting of all subspaces spanned over the 2-element field \mathbb{F}_2 by all the nonzero elements of $\{0, 1\}^n$, i.e., the projective geometry of rank n over \mathbb{F}_2.
Consider the binary matroid \mathcal{A}_n^2 consisting of all subspaces spanned over the 2-element field \mathbb{F}_2 by all the nonzero elements of $\{0, 1\}^n$, i.e., the projective geometry of rank n over \mathbb{F}_2.

The identity map $\mathcal{A}_n \rightarrow \mathcal{A}_n^2$ is a rank-preserving weak map (inverse image of independent sets are independent), so by the theorem of Lucas

...
The “binary all-subsets arrangement”

Consider the binary matroid A^2_n consisting of all subspaces spanned over the 2-element field \mathbb{F}_2 by all the nonzero elements of $\{0, 1\}^n$, i.e., the projective geometry of rank n over \mathbb{F}_2.

The identity map $A_n \mapsto A^2_n$ is a rank-preserving weak map (inverse image of independent sets are independent), so by the theorem of Lucas

$$|w_k(A_n)| \geq |w_k(A^{(2)}_n)|$$

for each k, we get
Consider the binary matroid \mathcal{A}_n^2 consisting of all subspaces spanned over the 2-element field \mathbb{F}_2 by all the nonzero elements of $\{0, 1\}^n$, i.e., the projective geometry of rank n over \mathbb{F}_2.

The identity map $\mathcal{A}_n \mapsto \mathcal{A}_n^2$ is a rank-preserving weak map (inverse image of independent sets are independent), so by the theorem of Lucas

$$|w_k(\mathcal{A}_n)| \geq |w_k(\mathcal{A}_n^2)|$$

for each k, and so we conclude

$$(-1)^n \chi(\mathcal{A}_n, -1) \geq (-1)^n \chi(\mathcal{A}_n^2, -1).$$
Consider the binary matroid \mathcal{A}_n^2 consisting of all subspaces spanned over the 2-element field \mathbb{F}_2 by all the nonzero elements of $\{0, 1\}^n$, i.e., the projective geometry of rank n over \mathbb{F}_2.

The identity map $\mathcal{A}_n \hookrightarrow \mathcal{A}_n^2$ is a rank-preserving weak map (inverse image of independent sets are independent), so by the theorem of Lucas

$$|w_k(\mathcal{A}_n)| \geq |w_k(\mathcal{A}_n^2)|$$

for each k, and so we conclude

$$(-1)^n \chi(\mathcal{A}_n, -1) \geq (-1)^n \chi(\mathcal{A}_n^2, -1).$$

Since

$$\chi(\mathcal{A}_n^2, t) = \prod_{i=0}^{n-1} (t - 2^i).$$
Consider the **binary matroid** A_n^2 consisting of all subspaces spanned over the **2-element field** \mathbb{F}_2 by all the nonzero elements of $\{0, 1\}^n$, i.e., the projective geometry of rank n over \mathbb{F}_2.

The identity map $A_n \mapsto A_n^2$ is a rank-preserving weak map (inverse image of independent sets are independent), so by the theorem of Lucas

$$|w_k(A_n)| \geq |w_k(A_n^{(2)})|$$

for each k, and so we conclude

$$(-1)^n \chi(A_n, -1) \geq (-1)^n \chi(A_n^{(2)}, -1).$$

Since

$$\chi(A_n^{(2)}, t) = \prod_{i=0}^{n-1} (t - 2^i).$$

we get
Theorem: The number of maximal unbalanced families in $[n]$, equivalently, the number of chambers of the arrangement A_{n-1}, is at least $\prod_{i=0}^{n-2} (2^i + 1)$. Thus the number of maximal unbalanced collections is more than

$$\prod_{i=0}^{n-2} 2^i = 2^{\frac{(n-1)(n-2)}{2}}.$$
Theorem: The number of maximal unbalanced families in \([n]\), equivalently, the number of chambers of the arrangement \(\mathcal{A}_{n-1}\), is at least \(\prod_{i=0}^{n-2}(2^i + 1)\). Thus the number of maximal unbalanced collections is more than

\[
\prod_{i=0}^{n-2} 2^i = 2^{\frac{(n-1)(n-2)}{2}}.
\]

This answers a question raised by the physicist T.S. Evans, who asked if the number of such collections exceeded \(n!\).
To give an upper bound, we consider the signature (degree sequence) of an unbalanced family F in \[n \]

$$\text{sig}(F) := (s_1, ..., s_n)$$

where $s_i = |\{ F \in F | i \in F \}|$.

$\text{sig}(\cdot)$ is injective over maximal unbalanced families. If F is maximal, then all entries of $\text{sig}(F)$ have the same parity.

$|F| = 2^n - 1 - 1$ for maximal unbalanced families, so there are fewer than \(2^n - 1\) possible signatures.

Theorem: There are fewer than $2^{(n-1)^2}$ maximal unbalanced families in $[n]$.

\(^1\) J. Moore, C. Moraites, Y. Wang, C. Williams
To give an upper bound, we consider the *signature* (degree sequence) of an unbalanced family \mathcal{F} in $[n]$.

$\text{sig}(\mathcal{F}) := (s_1, \ldots, s_n)$ where $s_i = |\{\mathcal{F} \in \mathcal{F} | i \in \mathcal{F}\}|$.

$\text{sig}(\cdot)$ is injective over maximal unbalanced families.

If \mathcal{F} is maximal, then all entries of $\text{sig}(\mathcal{F})$ have the same parity.

$|\mathcal{F}| = 2^n - 1 - 1$ for maximal unbalanced families, so there are fewer than $2^{(n-1)/2}$ possible signatures.

Theorem: There are fewer than $2^{(n-1)/2}$ maximal unbalanced families in $[n]$.

1 J. Moore, C. Moraites, Y. Wang, C. Williams
To give an upper bound, we consider the signature (degree sequence) of an unbalanced family \mathcal{F} in $[n]$

$$\text{sig}(\mathcal{F}) := (s_1, \ldots, s_n)$$
To give an upper bound, we consider the signature (degree sequence) of an unbalanced family \mathcal{F} in $[n]$

$$\text{sig}(\mathcal{F}) := (s_1, \ldots, s_n)$$

where $s_i = |\{F \in \mathcal{F} \mid i \in F\}|$.

\[1\] J. Moore, C. Moraites, Y. Wang, C. Williams
To give an upper bound, we consider the signature (degree sequence) of an unbalanced family \mathcal{F} in $[n]$

$$\text{sig}(\mathcal{F}) := (s_1, \ldots, s_n)$$

where $s_i = |\{F \in \mathcal{F} \mid i \in F\}|$.

- $\text{sig}(\cdot)$ is injective over maximal unbalanced families

1 J. Moore, C. Moraites, Y. Wang, C. Williams
To give an upper bound, we consider the signature (degree sequence) of an unbalanced family \(\mathcal{F} \) in \([n]\)

\[
\text{sig}(\mathcal{F}) := (s_1, \ldots, s_n)
\]

where \(s_i = |\{F \in \mathcal{F} \mid i \in F\}| \).

- \(\text{sig}(\cdot) \) is injective over maximal unbalanced families
- If \(\mathcal{F} \) is maximal, then all entries of \(\text{sig}(\mathcal{F}) \) have the same parity.

\[|\mathcal{F}| = 2^n - 1 - 1 \]

for maximal unbalanced families, so

\[
\text{There are fewer than } 2^{(n-1)}^2 \text{ maximal unbalanced families in } [n].
\]

\(^1\)J. Moore, C. Moraites, Y. Wang, C. Williams
To give an upper bound, we consider the signature (degree sequence) of an unbalanced family \mathcal{F} in $[n]$

\[\text{sig}(\mathcal{F}) := (s_1, \ldots, s_n) \]

where $s_i = |\{ F \in \mathcal{F} \mid i \in F \}|$.

- $\text{sig}(\cdot)$ is injective over maximal unbalanced families
- If \mathcal{F} is maximal, then all entries of $\text{sig}(\mathcal{F})$ have the same parity.
- $|\mathcal{F}| = 2^{n-1} - 1$ for maximal unbalanced families, so

1 J. Moore, C. Moraites, Y. Wang, C. Williams
To give an upper bound, we consider the signature (degree sequence) of an unbalanced family \mathcal{F} in $[n]$

$$\text{sig}(\mathcal{F}) := (s_1, \ldots, s_n)$$

where $s_i = |\{F \in \mathcal{F} \mid i \in F\}|$.

- $\text{sig}(\cdot)$ is injective over maximal unbalanced families
- If \mathcal{F} is maximal, then all entries of $\text{sig}(\mathcal{F})$ have the same parity.
- $|\mathcal{F}| = 2^{n-1} - 1$ for maximal unbalanced families, so
- There are fewer than $\frac{(2^{n-1})^n}{2^{n-1}} = 2^{(n-1)^2}$ possible signatures,

1 J. Moore, C. Moraites, Y. Wang, C. Williams
To give an upper bound, we consider the signature (degree sequence) of an unbalanced family \mathcal{F} in $[n]$

$$\text{sig}(\mathcal{F}) := (s_1, \ldots, s_n)$$

where $s_i = |\{F \in \mathcal{F} \mid i \in F\}|$.

- $\text{sig}(-)$ is injective over maximal unbalanced families
- If \mathcal{F} is maximal, then all entries of $\text{sig}(\mathcal{F})$ have the same parity.
- $|\mathcal{F}| = 2^{n-1} - 1$ for maximal unbalanced families, so
- There are fewer than $(2^{n-1})^n/2^{n-1} = 2^{(n-1)^2}$ possible signatures,

Theorem: There are fewer than $2^{(n-1)^2}$ maximal unbalanced families in $[n]$.

1J. Moore, C. Moraites, Y. Wang, C. Williams
• A collection of subsets $\mathcal{T} \subset 2^{[n]}$ is a threshold collection if there is a weight vector $w \in \mathbb{R}^n$ and $q \in \mathbb{R}$ so that

$$S \in \mathcal{T} \iff \sum_{i \in S} w_i > q$$
• A collection of subsets $\mathcal{T} \subset 2^{[n]}$ is a threshold collection if there is a weight vector $w \in \mathbb{R}^n$ and $q \in \mathbb{R}$ so that

$$S \in \mathcal{T} \iff \sum_{i \in S} w_i > q$$

Note: A Boolean function $f : \{0, 1\}^n \to \{0, 1\}$ is a threshold function iff there is a threshold collection \mathcal{T} so that

$$f(e_S) = 1 \iff S \in \mathcal{T}.$$
Threshold collections and threshold functions

- A collection of subsets $\mathcal{T} \subset 2^{[n]}$ is a **threshold collection** if there is a weight vector $w \in \mathbb{R}^n$ and $q \in \mathbb{R}$ so that

$$S \in \mathcal{T} \iff \sum_{i \in S} w_i > q$$

Note: A Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ is a **threshold function** iff there is a threshold collection \mathcal{T} so that

$$f(e_S) = 1 \iff S \in \mathcal{T}.$$

- A **0-threshold collection** is one for which the quota $q = 0$.
Threshold collections and threshold functions

- A collection of subsets $\mathcal{T} \subset 2^{[n]}$ is a threshold collection if there is a weight vector $w \in \mathbb{R}^n$ and $q \in \mathbb{R}$ so that
 \[S \in \mathcal{T} \iff \sum_{i \in S} w_i > q \]

Note: A Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ is a threshold function iff there is a threshold collection \mathcal{T} so that
 \[f(e_S) = 1 \iff S \in \mathcal{T}. \]

- A 0-threshold collection is one for which the quota $q = 0$.
- An unbalanced collection is a 0-threshold collection for which the weight vector w satisfies $\sum_{i=1}^n w_i = 0$.
Threshold collections and threshold functions

• A collection of subsets $\mathcal{T} \subset 2^{[n]}$ is a **threshold collection** if there is a weight vector $\mathbf{w} \in \mathbb{R}^n$ and $q \in \mathbb{R}$ so that

$$S \in \mathcal{T} \iff \sum_{i \in S} w_i > q$$

Note: A Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ is a **threshold function** iff there is a threshold collection \mathcal{T} so that

$$f(e_S) = 1 \iff S \in \mathcal{T}.$$

• A **0-threshold collection** is one for which the quota $q = 0$.

• An **unbalanced collection** is a 0-threshold collection for which the weight vector \mathbf{w} satisfies $\sum_{i=1}^{n} w_i = 0$.

Thus $\{\text{unbalanced } \mathcal{T}\} \subset \{\text{0-threshold } \mathcal{T}\} \subset \{\text{threshold } \mathcal{T}\}$
Numbers of unbalanced and 0-threshold collections

Let

\[E_n = |\{ \text{maximal unbalanced } \mathcal{T} \subset 2^{[n]} \}| \]
Numbers of unbalanced and 0-threshold collections

Let

\[E_n = |\{ \text{maximal unbalanced } \mathcal{T} \subset 2^{[n]} \}| \]

\[T_n^0 = |\{ \text{0-threshold } \mathcal{T} \subset 2^{[n]} \}| \]
Let

\[E_n = |\{ \text{maximal unbalanced } \mathcal{T} \subset 2^n \}| \]
\[T_n^0 = |\{ \text{0-threshold } \mathcal{T} \subset 2^n \}| \]
\[T_n = |\{ \text{threshold } \mathcal{T} \subset 2^n \}| \]
Numbers of unbalanced and 0-threshold collections

Let

\[E_n = |\{ \text{maximal unbalanced } \mathcal{T} \subset 2^n \}| \]

\[T_n^0 = |\{ \text{0-threshold } \mathcal{T} \subset 2^n \}| \]

\[T_n = |\{ \text{threshold } \mathcal{T} \subset 2^n \}| \]

Then \(E_n \leq T_n^0 \leq T_n \).
Numbers of unbalanced and 0-threshold collections

Let

\[E_n = |\{ \text{maximal unbalanced } \mathcal{T} \subset 2^n \}| \]
\[T_n^0 = |\{ \text{0-threshold } \mathcal{T} \subset 2^n \}| \]
\[T_n = |\{ \text{threshold } \mathcal{T} \subset 2^n \}| \]

Then \(E_n \leq T_n^0 \leq T_n \). Now recall
Let

\[E_n = \left| \{ \text{maximal unbalanced } \mathcal{T} \subset 2^{\{n\}} \} \right| \]

\[T_n^0 = \left| \{ \text{0-threshold } \mathcal{T} \subset 2^{\{n\}} \} \right| \]

\[T_n = \left| \{ \text{threshold } \mathcal{T} \subset 2^{\{n\}} \} \right| \]

Then \(E_n \leq T_n^0 \leq T_n \). Now recall

- \(\mathcal{A}_n \) all-subset arrangement in \(\mathbb{R}^n \), consisting of all hyperplanes with normals \(e_S, S \subset [n], S \neq \emptyset \).
Numbers of unbalanced and 0-threshold collections

Let

\[E_n = |\{ \text{ maximal unbalanced } \mathcal{T} \subset 2^{[n]} \}| \]
\[T^0_n = |\{ \text{ 0-threshold } \mathcal{T} \subset 2^{[n]} \}| \]
\[T_n = |\{ \text{ threshold } \mathcal{T} \subset 2^{[n]} \}| \]

Then \(E_n \leq T_n^0 \leq T_n \). Now recall

- \(A_n \) all-subset arrangement in \(\mathbb{R}^n \), consisting of all hyperplanes with normals \(e_S, S \subseteq [n], S \neq \emptyset \).
- \(E_n \) is the number of regions in \(A_{n-1} \).
Numbers of unbalanced and 0-threshold collections

Let

\[E_n = |\{ \text{maximal unbalanced } \mathcal{T} \subset 2^{[n]} \}| \]
\[T^0_n = |\{ \text{0-threshold } \mathcal{T} \subset 2^{[n]} \}| \]
\[T_n = |\{ \text{threshold } \mathcal{T} \subset 2^{[n]} \}| \]

Then \(E_n \leq T^0_n \leq T_n \). Now recall

- \(A_n \) all-subset arrangement in \(\mathbb{R}^n \), consisting of all hyperplanes with normals \(e_S, S \subseteq [n], S \neq \emptyset \).

- \(E_n \) is the number of regions in \(A_{n-1} \)

But the regions in \(A_n \) also correspond to 0-threshold collections in \(2^{[n]} \).
Let

\[E_n = |\{ \text{maximal unbalanced } \mathcal{T} \subset 2^{[n]} \}| \]

\[T_n^0 = |\{ \text{0-threshold } \mathcal{T} \subset 2^{[n]} \}| \]

\[T_n = |\{ \text{threshold } \mathcal{T} \subset 2^{[n]} \}| \]

Then \(E_n \leq T_n^0 \leq T_n \). Now recall

- \(\mathcal{A}_n \) all-subset arrangement in \(\mathbb{R}^n \), consisting of all hyperplanes with normals \(e_S, S \subseteq [n], S \neq \emptyset \).

- \(E_n \) is the number of regions in \(\mathcal{A}_{n-1} \)

But the regions in \(\mathcal{A}_n \) also correspond to 0-threshold collections in \(2^{[n]} \). Thus \(T_{n-1}^0 = E_n \)
Numbers of unbalanced and 0-threshold collections

Let

\[E_n = |\{ \text{maximal unbalanced } \mathcal{T} \subset 2^n \}| \]
\[T_n^0 = |\{ \text{0-threshold } \mathcal{T} \subset 2^n \}| \]
\[T_n = |\{ \text{threshold } \mathcal{T} \subset 2^n \}| \]

Then \(E_n \leq T_n^0 \leq T_n \). Now recall

• \(\mathcal{A}_n \) all-subset arrangement in \(\mathbb{R}^n \), consisting of all hyperplanes with normals \(e_S, S \subseteq [n], S \neq \emptyset \).

• \(E_n \) is the number of regions in \(\mathcal{A}_{n-1} \)

But the regions in \(\mathcal{A}_n \) also correspond to 0-threshold collections in \(2^n \). Thus \(T_{n-1}^0 = E_n \) and so our bounds were already known.
Let

\[E_n = |\{ \text{maximal unbalanced } \mathcal{T} \subset 2^{[n]} \}| \]
\[T^0_n = |\{ \text{0-threshold } \mathcal{T} \subset 2^{[n]} \}| \]
\[T_n = |\{ \text{threshold } \mathcal{T} \subset 2^{[n]} \}| \]

Then \(E_n \leq T^0_n \leq T_n \). Now recall

- \(A_n \) all-subset arrangement in \(\mathbb{R}^n \), consisting of all hyperplanes with normals \(e_S, S \subseteq [n], S \neq \emptyset \).

- \(E_n \) is the number of regions in \(A_{n-1} \)

But the regions in \(A_n \) also correspond to 0-threshold collections in \(2^{[n]} \). Thus \(T^0_{n-1} = E_n \) and so our bounds were already known. In fact:
Numbers of unbalanced and 0-threshold collections

Let

\[E_n = |\{ \text{maximal unbalanced } \mathcal{T} \subset 2^n \}| \]
\[T_n^0 = |\{ \text{0-threshold } \mathcal{T} \subset 2^n \}| \]
\[T_n = |\{ \text{threshold } \mathcal{T} \subset 2^n \}| \]

Then \(E_n \leq T_n^0 \leq T_n \). Now recall

- \(\mathcal{A}_n \) all-subset arrangement in \(\mathbb{R}^n \), consisting of all hyperplanes with normals \(e_S, S \subseteq [n], S \neq \emptyset \).

- \(E_n \) is the number of regions in \(\mathcal{A}_{n-1} \)

But the regions in \(\mathcal{A}_n \) also correspond to 0-threshold collections in \(2^n \). Thus \(T_{n-1}^0 = E_n \) and so our bounds were already known. In fact:

Theorem (Zuev, 1989): \(\log_2 E_n \sim (n - 1)^2 \) as \(n \to \infty \)
Let

\[E_n = |\{ \text{maximal unbalanced } \mathcal{T} \subset 2^n \}| \]

\[T_n^0 = |\{ \text{0-threshold } \mathcal{T} \subset 2^n \}| \]

\[T_n = |\{ \text{threshold } \mathcal{T} \subset 2^n \}| \]

Then \(E_n \leq T_n^0 \leq T_n \). Now recall

• \(\mathcal{A}_n \) all-subset arrangement in \(\mathbb{R}^n \), consisting of all hyperplanes with normals \(e_S, S \subseteq [n], S \neq \emptyset \).

• \(E_n \) is the number of regions in \(\mathcal{A}_{n-1} \)

But the regions in \(\mathcal{A}_n \) also correspond to 0-threshold collections in \(2^n \). Thus \(T_{n-1}^0 = E_n \) and so our bounds were already known. In fact:

Theorem (Zuev, 1989): \(\log_2 E_n \sim (n - 1)^2 \) as \(n \to \infty \)

The argument uses a theorem of Odlyzko on random \(\pm 1 \) vectors.
Further, one can describe threshold collections $\mathcal{T} \subset 2^{[n]}$ via

$$\exists (w, q) \in \mathbb{R}^{n+1} \text{ so that } S \in \mathcal{T} \iff \sum_{S} w_i + q > 0$$
Further, one can describe threshold collections $\mathcal{T} \subset 2^{[n]}$ via

$$\exists (w, q) \in \mathbb{R}^{n+1} \text{ so that } S \in \mathcal{T} \iff \sum_{S} w_i + q > 0$$

Thus, threshold collections $\mathcal{T} \subset 2^{[n]}$ are in 1-1 correspondence with regions of a subarrangement of \mathcal{A}_{n+1}
Further, one can describe threshold collections $\mathcal{T} \subset 2^{[n]}$ via

$$\exists (w, q) \in \mathbb{R}^{n+1} \text{ so that } S \in \mathcal{T} \iff \sum_{S} w_i + q > 0$$

Thus, threshold collections $\mathcal{T} \subset 2^{[n]}$ are in 1-1 correspondence with regions of a subarrangement of A_{n+1} (remove all planes corresponding to subsets not containing $n + 1$)
Further, one can describe threshold collections $\mathcal{T} \subset 2^{[n]}$ via

$$\exists (w, q) \in \mathbb{R}^{n+1} \text{ so that } S \in \mathcal{T} \iff \sum_{S} w_i + q > 0$$

Thus, threshold collections $\mathcal{T} \subset 2^{[n]}$ are in 1-1 correspondence with regions of a subarrangement of A_{n+1} (remove all planes corresponding to subsets not containing $n + 1$)

and so
Further, one can describe threshold collections $\mathcal{T} \subset 2^{[n]}$ via

$$\exists (w, q) \in \mathbb{R}^{n+1} \text{ so that } S \in \mathcal{T} \iff \sum_S w_i + q > 0$$

Thus, threshold collections $\mathcal{T} \subset 2^{[n]}$ are in 1-1 correspondence with regions of a subarrangement of \mathcal{A}_{n+1} (remove all planes corresponding to subsets not containing $n + 1$)

and so

$$T_n < T_{n+1}^0 = E_{n+2}$$
Further, one can describe threshold collections $\mathcal{T} \subset 2^{[n]}$ via

$$\exists (w, q) \in \mathbb{R}^{n+1} \text{ so that } S \in \mathcal{T} \iff \sum_{S} w_i + q > 0$$

Thus, threshold collections $\mathcal{T} \subset 2^{[n]}$ are in 1-1 correspondence with regions of a subarrangement of \mathcal{A}_{n+1} (remove all planes corresponding to subsets not containing $n + 1$)

and so

$$T_n < T_{n+1}^0 = E_{n+2}$$

How much less is not known
Further, one can describe threshold collections $\mathcal{T} \subset 2^{[n]}$ via

$$\exists (w, q) \in \mathbb{R}^{n+1} \text{ so that } S \in \mathcal{T} \iff \sum_{S} w_i + q > 0$$

Thus, threshold collections $\mathcal{T} \subset 2^{[n]}$ are in 1-1 correspondence with regions of a subarrangement of \mathcal{A}_{n+1} (remove all planes corresponding to subsets not containing $n + 1$)

and so

$$T_n < T^0_{n+1} = E_{n+2}$$

How much less is not known but should be.
Minimal balanced collections can be viewed as generalized partitions. Is there a nice poset structure for them?
Open questions

- Minimal balanced collections can be viewed as generalized partitions. Is there a nice poset structure for them?
- Determine $\chi(A_n, t)$ exactly for all n. Kamiya, Takemura and Terao have computed it for $n \leq 8$.
- Is there some sort of resolution theory for weak maps that would enable this computation?
- The signature, and more generally, the degree sequence of graphs and threshold complexes, behaves like the coordinates for secondary polytopes given by Gel'fand, Kapranov and Zelevinski. Is there some relation here?
Minimal balanced collections can be viewed as generalized partitions. Is there a nice poset structure for them?

Determine $\chi(A_n, t)$ exactly for all n. Kamiya, Takemura and Terao have computed it for $n \leq 8$.

Is there some sort of resolution theory for weak maps that would enable this computation?
Open questions

- Minimal balanced collections can be viewed as generalized partitions. Is there a nice poset structure for them?
- Determine $\chi(A_n, t)$ exactly for all n. Kamiya, Takemura and Terao have computed it for $n \leq 8$.
- Is there some sort of resolution theory for weak maps that would enable this computation?
- The signature, and more generally, the degree sequence of graphs and threshold complexes, behaves like the coordinates for secondary polytopes given by Gel’fand, Kapranov and Zelevinski. Is there some relation here?
Some references

[includes references to the economics/physics applications, in particular]

