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Balanced Collections

For S ⊆ [n] = {1, 2, . . . , n}, let eS :=
∑

i∈S ei , where
ei = (0, . . . , 1, . . . , 0) is the ith unit vector in Rn.

A collection F ⊆ 2[n] is said to be balanced if

δ · e[n] ∈ conv{eS | S ∈ F}

for some 0 < δ ≤ 1.

Equivalently, F is balanced if the convex hull of the vertices of the
cube [0, 1]n corresponding to the sets in F meets the diagonal.

Example:
1) F any partition of [n]
2) F = {{1, 2}, {1, 3}, {2, 3}} in {1, 2, 3}
3)
([n]
k

)
in [n]
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Cooperative games and economic equilibria

Balanced collections were introduced 50 years ago by Lloyd
Shapley (Nobel Prize in Economics, 2012) to characterize when
cooperative games (with transferable utility) were robust enough
(so-called balanced games) to ensure that players could be paid
enough to guarantee that no subset could do better by leaving the
coalition of everyone.

Shortly afterward, Herb Scarf generalized Shapley’s result to the
nontransferable utility case, introducing what has come to be
known as the Scarf complex in the proof.

Shapley and Shubik showed that games balanced in all restrictions
were precisely those games coming from economic trading models.

Your speaker spent many years trying to generalize this to the
nontransferable utility case, with some but not complete success.



Cooperative games and economic equilibria

Balanced collections were introduced 50 years ago by Lloyd
Shapley (Nobel Prize in Economics, 2012) to characterize when
cooperative games (with transferable utility) were robust enough
(so-called balanced games) to ensure that players could be paid
enough to guarantee that no subset could do better by leaving the
coalition of everyone.

Shortly afterward, Herb Scarf generalized Shapley’s result to the
nontransferable utility case, introducing what has come to be
known as the Scarf complex in the proof.

Shapley and Shubik showed that games balanced in all restrictions
were precisely those games coming from economic trading models.

Your speaker spent many years trying to generalize this to the
nontransferable utility case, with some but not complete success.



Cooperative games and economic equilibria

Balanced collections were introduced 50 years ago by Lloyd
Shapley (Nobel Prize in Economics, 2012) to characterize when
cooperative games (with transferable utility) were robust enough
(so-called balanced games) to ensure that players could be paid
enough to guarantee that no subset could do better by leaving the
coalition of everyone.

Shortly afterward, Herb Scarf generalized Shapley’s result to the
nontransferable utility case, introducing what has come to be
known as the Scarf complex in the proof.

Shapley and Shubik showed that games balanced in all restrictions
were precisely those games coming from economic trading models.

Your speaker spent many years trying to generalize this to the
nontransferable utility case, with some but not complete success.



Cooperative games and economic equilibria

Balanced collections were introduced 50 years ago by Lloyd
Shapley (Nobel Prize in Economics, 2012) to characterize when
cooperative games (with transferable utility) were robust enough
(so-called balanced games) to ensure that players could be paid
enough to guarantee that no subset could do better by leaving the
coalition of everyone.

Shortly afterward, Herb Scarf generalized Shapley’s result to the
nontransferable utility case, introducing what has come to be
known as the Scarf complex in the proof.

Shapley and Shubik showed that games balanced in all restrictions
were precisely those games coming from economic trading models.

Your speaker spent many years trying to generalize this to the
nontransferable utility case, with some but not complete success.



Core of cooperative game

A cooperative game (with transferable utility) is a function

v : 2[n] → R

where, for S ⊆ [n], v(S) is the amount that the coalition S can
assure itself by the rules of the game – the idea being that
whatever benefit can be achieved by members of the group can be
redistributed to any or all its members (tran$ferable utility):

i.e., any x ∈ Rn with
∑

i∈[n] xi = v([n]) is a possible outcome.

The core of v is the set of outcomes for which no coalition S ⊂ [n]
can do better for all its members:x ∈ Rn

∣∣∣∣∣ ∑
i∈[n]

xi = v([n]),
∑
i∈S

xi ≥ v(S) for all S ⊂ [n]


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Shapley-Bondareva Theorem

For some games, the core may be empty:

• the general rule of thumb is that games arising from economic
situations often have nonempty cores

• while those arising from political considerations will have empty
cores unless there is a ruling clique (which takes it all).

Theorem (Shapley-Bondareva): A game v on [n] has a nonempty
core ⇐⇒ v is balanced: for every minimal balanced collection F ,

if e[n] =
∑

S∈F δSeS then v([n]) ≥
∑

S∈F δS v(S).

Theorem (Shapley-Shubik): A game v on [n] arises from a
economic trading model with convex preferences ⇐⇒ for each
S ⊆ [n], the subgame v |S on S is balanced (has a nonempty core).

Note: In the NTU case, where V (S) is a set in place of a number,
market ⇒ balanced ⇒ core nonempty still holds (with inclusion
and set sums) [Scarf], while the converse of the second (balanced
⇒ market) has been proved in many, but not all, cases [B , et al.].
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Maximal Unbalanced Collections

A collection is said to be unbalanced if it is not balanced.

Unbalanced collections form an order ideal in the Boolean lattice
22

[n]
, under the inclusion order on collections. We are interested in

collections F that are maximal in this order, the maximal
unbalanced collections.

Basic linear alternative theorem:
Either F is balanced
Or ∃w ∈ Rn, with

∑
i∈[n] wi = 0 and

∑
i∈S wi > 0 for S ∈ F .

Thus maximal unbalanced collections are the same as Björner’s
PSS (positive set sum) systems.

We are interested in enumerating these collections.
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Applications to Physics

Unbalanced collections arise in

thermal field theory

= quantum field theory + statistical mechanics

in mathematical physics.

Maximal unbalanced collections ←→ Feynman diagrams;

a certain power series approximation will not converge if there are
too many of these. This number has been computed through n=9:

2 3 4 5 6 7 8 9

2 6 32 370 11,292 1,066,044 347,326,352 419,172,756,930

Driving in Sicily!
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A few examples

For n = 3, the 6 maximal unbalanced collections are{
{1, 2}, {1, 3}, {1}

}
,
{
{1, 2}, {2, 3}, {2}

}
,
{
{1, 3}, {2, 3}, {3}

}
{
{2}, {3}, {2, 3}

}
,
{
{1}, {3}, {1, 3}
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Maximal unbalanced collections as posets

Björner has studied the poset structure of maximal unbalanced
collections F ⊂ 2[n] (under set inclusion)

they always have 2n−1 − 1 sets and rank n − 2 with (n − 1)!
maximal chains.

their order complexes are always shellable balls with a single
interior vertex

their f -vectors are all the same; in fact, hi (∆(F)) is the
number of permutations in Sn−1 with i descents (classical
Eulerian numbers).
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The simplicial complex ∆(F)

Examples:

n = 3 For the collections{
{1, 2}, {1, 3}, {1}

}
and

{
{1}, {2}, {1, 2}
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{1, 2} {1} {1, 3} {1, 2}{1}v

Note: both have f (∆) = (3, 2) and a unique interior vertex
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Here both have f (∆) = (7, 12, 6) and a single interior vertex.
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Restricted all-subset arrangement in Rn

Recall: F ⊂ 2[n] is unbalanced ⇐⇒
∃w ∈ Rn, with

∑
i∈[n] wi = 0 and

∑
i∈S wi > 0 for S ∈ F .

This defines a hyperplane arrangement in Rn, actually on the
hyperplane H0 := {x ∈ Rn |

∑
i∈[n] xi = 0} (the space of all

possible w ’s), called the restricted all subsets arrangement, with all
the hyperplanes having normals eS ,S ⊂ [n], S 6= ∅, [n].

The maximal (full-dimensional) regions in this arrangement are in
bijection with the maximal unbalanced collections in 2[n].

Restricted to H0, the hyperplanes corresponding to S and [n] \ S
are the same, so there are 2n−1 − 1 hyperplanes in this
arrangement, and so 2n−1 − 1 sets in any maximal unbalanced
collection.
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All-subset arrangement in Rn−1

Combinatorially equivalent to the restricted all-subset arrangement
in Rn is the all-subset arrangement An−1 in Rn−1, consisting of all
hyperplanes with normals eS ,S ⊆ [n − 1],S 6= ∅.

Again, regions of An−1 are in bijection with maximal unbalanced
collections in 2[n].

Example: n = 3. The planes of A2 are x1 = 0, x2 = 0, x1 + x2 = 0,
so A2 has 6 regions:
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A3 has 7 planes and 32 regions
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Lower bounds on regions in An

To count the regions in An, we use the theorem of Zaslavsky.

Recall the characteristic polynomial of An is defined by

χ(An, t) =
∑
x∈Ln

µ(0, x) trank(Ln)−rank(x) =
n∑

k=0

wk(Ln) tn−k

(Ln = lattice of flats of An) so the number of maximal regions of
An is

(−1)nχ(An,−1) =
∑
x∈Ln

|µ(0, x)| =
n∑

k=0

|wk(Ln)|.

Unfortunately, we don’t know χ(An, t).
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The “binary all-subsets arrangement”

Consider the binary matroid A2
n consisting of all subspaces spanned

over the 2-element field F2 by all the nonzero elements of {0, 1}n,

i.e., the projective geometry of rank n over F2.

The identity map An 7→ A2
n is a rank-preserving weak map (inverse

image of independent sets are independent), so by the theorem of
Lucas

|wk(An)| ≥ |wk(A(2)
n )|

for each k , and so we conclude

(−1)nχ(An,−1) ≥ (−1)nχ(A(2)
n ,−1).

Since

χ(A(2)
n , t) =

n−1∏
i=0

(t − 2i ).

we get
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Lower bound

Theorem: The number of maximal unbalanced families in [n],
equivalently, the number of chambers of the arrangement An−1, is
at least

∏n−2
i=0 (2i + 1). Thus the number of maximal unbalanced

collections is more than

n−2∏
i=0

2i = 2
(n−1)(n−2)

2 .

This answers a question raised by the physicist T.S. Evans, who
asked if the number of such collections exceeded n!.
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Upper bound1

To give an upper bound, we consider the signature (degree
sequence) of an unbalanced family F in [n]

sig(F) := (s1, . . . , sn)

where si = |{F ∈ F | i ∈ F}|.

sig(·) is injective over maximal unbalanced families

If F is maximal, then all entries of sig(F) have the same
parity.

|F| = 2n−1 − 1 for maximal unbalanced families, so

There are fewer than (2n−1)n/2n−1 = 2(n−1)
2

possible
signatures,

Theorem: There are fewer than 2(n−1)
2

maximal unbalanced
families in [n].

1J. Moore, C. Moraites, Y. Wang, C. Williams
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Threshold collections and threshold functions

• A collection of subsets T ⊂ 2[n] is a threshold collection if there
is a weight vector w ∈ Rn and q ∈ R so that

S ∈ T ⇐⇒
∑
i∈S

wi > q

Note: A Boolean function f : {0, 1}n → {0, 1} is a threshold
function iff there is a threshold collection T so that

f (eS) = 1⇔ S ∈ T .

• A 0-threshold collection is one for which the quota q = 0.

• An unbalanced collection is a 0-threshold collection for which the
weight vector w satisfies

∑n
i=1 wi = 0.

Thus { unbalanced T } ⊂ { 0-threshold T } ⊂ { threshold T }
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Numbers of unbalanced and 0-threshold collections

Let

En = |{ maximal unbalanced T ⊂ 2[n]}|

T 0
n = |{ 0-threshold T ⊂ 2[n]}|

Tn = |{ threshold T ⊂ 2[n]}|

Then En ≤ T 0
n ≤ Tn. Now recall

• An all-subset arrangement in Rn, consisting of all hyperplanes
with normals eS ,S ⊆ [n],S 6= ∅.

• En is the number of regions in An−1

But the regions in An also correspond to 0-threshold collections in
2[n]. Thus T 0

n−1 = En and so our bounds were already known. In
fact:

Theorem (Zuev, 1989): log2 En ∼ (n − 1)2 as n→∞

The argument uses a theorem of Odlyzko on random ±1 vectors.
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Numbers of threshold and 0-threshold collections

Further, one can describe threshold collections T ⊂ 2[n] via

∃(w , q) ∈ Rn+1 so that S ∈ T ⇐⇒
∑
S

wi + q > 0

Thus, threshold collections T ⊂ 2[n] are in 1-1 correspondence with
regions of a subarrangement of An+1 (remove all planes
corresponding to subsets not containing n + 1)

and so
Tn < T 0

n+1 = En+2

How much less is not known but should be.
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Open questions

Minimal balanced collections can be viewed as generalized
partitions. Is there a nice poset structure for them?

Determine χ(An, t) exactly for all n. Kamiya, Takemura and
Terao have computed it for n ≤ 8.

Is there some sort of resolution theory for weak maps that
would enable this computation?

The signature, and more generally, the degree sequence of
graphs and threshold complexes, behaves like the coordinates
for secondary polytopes given by Gel’fand, Kapranov and
Zelevinski. Is there some relation here?
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