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Overview

m LLL and its generalizations
m LLL — an instance of the Poisson paradigm
m New negative dependency graphs

m Applications:

— Permutation enumeration
— Latin rectangle enumeration
— Regular graph enumeration




When none of the events happen

m Assume that 4,,4,,...,4, are events in a
probapility space 2. How can we
infer ﬂX¢@ ?

mifAa’ s are m\utually mdependent P(A4)<I,
then P(ﬂA =T1r(4)= H(l P(A,))>0

mIf ZP fwen 3

(ﬂA]: [OAij:1—P(0Aij21—zn:P(Ai)>O

i=1 i=1




probability space Q.

m Graph G is a dependency graph of the
events 4,,4,,....4 , if V(G)={1,2,...,n} and
each 4. is independent of the elements
of the event algebra generated by

1A, :ij¢ E(G)}

A way to combine arguments:

m Assume that 4,,4,,...,4, are events in a
-
I




m Assume G IS a dependency graph for
A, A,,...,4,, and d=max degree in G

m [f for 1—1 2 ,h, P(4,)<p, and e(d+1)p<I,
then

LLovasz LLocal Lemma
(Erdos-Lovasz 1975)
o
I



Lovasz Local Lemma (Spencer)

m Assume G iIs a dependency graph for
A1’A21

m If there eX|st XX .. n [0,1) such that
)<, H ( %)
then yere
i

p(ﬁgjzfl[(l_xi)m




probability space Q.

m Graph G with V(G)={1,2,...,n} is a
negatlve dependency graph for events
A, 4,,....4 , if ‘v’z‘v’Sg{] l]%E(G)}

ﬂA >0 implies P(A ﬂAj}gp(A

]eS

JjES

Negative dependency graphs

m Assume that 4,,4,,...,4, are events in a
a
.




LLL: Erdos-Spencer 1991,
Albert-Freeze-Reed 1995, Ku

m Assume G Is a negative dependency
graph for 4,,4,,.. ,A exist x,,x,,...,x_ In
. [0,1) such that,P(4)<x, H (1 XIthen

p(ﬁzjz i (l—xi)>0

l m Setting x.=1/d+1) implies the uniform
B version both for dependency and

l negative dependency



Needle 1n the haystack

m LLL has been in use for existence

proofs to exhibit the existence of events
_ of tiny probability. Is it good for other
purposes”?

m Where to find negative dependency
graphs that are not dependency
graphs?




denote the sum of indicator variables of
the events. If dependencies are rare, X
can be approximated with Poisson
distribution of mean X p..

mm " X~Poisson means P(X=k)=e"*u" /!

l using k=0, P(ﬁzj o ezp

Poisson paradigm
m Assume that 4,,4,,...,4, are events in a
- probability space Q, p(4,)=p,. Let X




m Janson inequality 1990
m Brun’s sieve

m Now: LLL. Assume G is negative
dependency graph, 0<e<0.14.

no__ —(1+3s)iP(Aj)
ViZP(Ai)<8; Z P(A])<g|mp|yP£ﬂA])Ze j=I
ijieE(G)

J=1

Models for the Poisson paradigm
m Chen-Stein method 1975-78

=

.



Two negative dependency graphs

m is a complete graph K,, or a complete
bipartite graph K, ; ; € is the uniform
1 probability space of maximal matchings
In H. For a partial matching M, the
canonical event A, ={FeQIM c F}

m Canonical events 4,,and 4,,.are in
conflict: M and M* have no common
extension into maximal matching, i.e.

N
l A, NA,, =D




graph G are defined by conflicts, then G
IS a negative dependency graph.

Main theorem
m For a graph H=K, or K,,;, and a family
- of canonical events, if the edges of the

m This theorem fails to extend for the
hexagon H=C,




Hexagon example
m Two perfect matchings
I



Relevance for permutation
enumeration problems

Derangements  2-cycle free 3-cycle free
avoid: avoids: avoids:

O—®




e-near-positive dependency graphs
m Assume that 4,,4,,...,4, are events in a
probability space Q.

- m Graph G with V(G)={1,2,...,n} Is an e¢—
l near-positive dependency graph of the
I

events 4,,4,,....,4,,
~ ije E(G)implies P(A N A,)=0
~ VivSc{j:ij¢E(G)}

l P(ﬂA_j]>OimplieS P(Al.
jes '




that 7(G) is partitioned into classes such
that events in the same class are
disjoint. For every partition class J,

let B, =|JA, The quotient graph of G is a
negative’dependency graph for the
events B,

Quotient graphs
m Assume G is a negative dependency
graph for 4,,4,,...,4A, . Assume further
i
N




of an e—near-positive dependency graph
are loops, then the quotient graph is
also an g-near-positive dependency
graph.

Quotient graphs of e-near-positive
dependency graphs
m |f the only edges of the quotient graph




Asymptotic results
m A collection of matchings M is regular,
- if for every i, every vertex is covered d,

times by i-element matchings from ‘M

m A collection of matchings M is o-sparse
(detalls avoided!)

m Negative dependency graphs of ¢-
B  sparse collections of matchings are also
l e-near-positive dependency graphs




size, ‘M is é-sparse. Set u=> P(A,)
over M. Suppose do=o(u ), u is
separated from 0, ;1= o(+/N+?) and

Asymptotic results — a theorem
= A collection of matchings M in K, or
K, yis regular, r is the largest matching
_
l = o(V)

N



Consequences for permutation
enumeration

m For £ fixed, the proportion of k-cycle free
- permutations is (1—0(1))(5%

m (Bender 70’s) If max K grows slowly with
n, the proportion of permutations free of
cycles of length from set K is

_kz;;%

- (1-o(1)



permutation into every row and not
repeating an entry in any column (k<n)

m L(k,n)= number of k£ times n Latin
rectangles

113141215
3121514 |1

41511]3]2

Latin rectangles
m Latin rectangle: k times n array filled
with entries 1,2,...,n; putting a
a
I




Enumeration of Latin rectangles

m L(2,n)= n!x(# of derangements) = (n!)%¢’!
m Riordan 1944 [ (3.,n) = (n!)’e”?
m Erdos-Kaplansky 1946

k

3

L(k,n)~ (n!)k e_( ’ ] for k = 0((logn)4)

®m Yamamoto 1951 extended to & = 0(n13_8)



k)| Kk

n') _[2 o for k=0(n%)

m Godsil and McKay 1990 refined the
asymptotics to make it work for

kzo(n%)

Enumeration of Latin rectangles
m Stein 1978 (using Chen-Stein method)
i
.



(n) ﬁ(l—;jnSL(k,n)

and with this matched Stein’s lower bound
on a slightly smaller ranﬁe

k k

L(k,n)=(1-o0M)(n!) e

Enumeration of Latin rectangles
m Skau 1990 (using van der Waerden’s
inequality for the permanent)
a
N
l for k= O(né/logn)



Enumeration of Latin rectangles

m Quotient graph version of the negative
dependency graph LLL yields Skau’s
lower bound:

k—1

- n
I (n!)kn(l—gj < L(k,n)

matches the range of Stein’s lower
N

bound: k [ : ]_E
L(k,n)=(1-o0(1))(n!) e

for k= o(n%/log n)




Enumeration of Latin rectangles

m Quotient graph version of the near ¢-
positive dependency graph argument
yields tight asymptotic upper bound in
Yamamoto's range:




Relevance for Latin rectangle

. 113141215
cnumeration ARG
415111312

m Try to fill in the fourth row with a

permutation of [5].

m Complete bipartite graph: 1st class
columns, 2nd class entries

m Canonical events defined by the edges
11, 13, 14; 23, 22, 25; 34, 35, 31; 42,
44 43; 55, 51, 52



/ ddnd \%

\/ze(l—dz)M

Le'(d)

Enumeration of labeled regular
graphs
m Bender-Canfield, independently
Wormald 1978: d fix, nd even
.




Configuration model
(Bollobas 1980)

m Put nd (nd even) vertices into » equal
clusters

m Pick a random matching of K ,

m Contract every cluster into a single
vertex getting a multigraph or a simple
graph

m Observe that all simple graphs are
equiprobable



Enumeration of labeled regular
graphs

= Bollobas 1980: nd even, d<.2logn

(1 n 0(1))8(1_d2)/4 ((dn _ 1)! !\

(d)"

m McKay 1985: for dzo(n%)



Enumeration of labeled regular
graphs

m McKay and Wormald: nd even, d = o(n%)

(1-a?)/4-d® ((12n)+0(d? In) (dn—1)!!
1+ol(l

(1+0(1)e ]

m Wormald 1981: fix d=3, ¢23 girth

g—1 (d_l)l

(1+0(1))e P2 (dn—l)!!

(@)




Theorem

m [n the configuration model, if >3 and
gd’¢3=0(n), then the probability that the
resulting random d-regular multigraph

I after the contraction has girth at least g,

(d-1)

IS _
(1+0(1))e g .
hence the number of d-regular graphs

with girth at least g |s
821 o (dn—1)1!

I
l (1+0(1))e @y




IS injection whp, if b>>a-, but:

m LLL can show the existence of an
Injection when 2ea < b.

Spencer’s joke
m Spencer’s joke in “Ten Lectures on the
Probabilistic Method”: uniformly
selected random function from [a] to [5]
N



probablllty at least

m Combinatorial proof to the slightly
weakened Stirling formula

Our joke
m Our joke: using negative dependency
graph LLL, a uniformly selected random
function [a] to [a] is injection with
N



Symmetric events

m Events A, ,A,,...,A_are symmetric, if the
probability of their Boolean expressions

i do not change, when 4, is substituted

for 4. simultaneously for any
permutation .




A Lemma for symmetric events

m If events A,,A,,... A, are symmetric
p; = P(ﬂz] and p, =1,
j=1
Vi=12,..n—-1 p’<p._p.,

then LLL applies with empty negative
dependency graph, x,=p,



Proof to our joke

m Consider a uniform random function f

from [a] to [b] with a<b. Let 4 denote the
event that f(u) occurs with multiplicity 2
or higher.

_1 a—1 o a—i
—b(b ) and p, =1! b (b-1)
b i b

B P(inj)=(1-P(4)) = (1—ljawl) = (l—o(l)ja

a €







