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Overview 

  LLL and its generalizations 
  LLL – an instance of the Poisson paradigm 
  New negative dependency graphs 
  Applications:  

–  Permutation enumeration  
–  Latin rectangle enumeration 
–  Regular graph enumeration 

  A joke 



When none of the events happen 

 Assume that A1,A2,…,An are events in a 
probability space Ω. How can we 
infer            ?  

  If Ai’s are mutually independent, P(Ai)<1, 
then 

  If               , then  
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A way to combine arguments: 

 Assume that A1,A2,…,An are events in a 
probability space Ω.  

 Graph G is a dependency graph of the 
events A1,A2,…,An, if V(G)={1,2,…,n} and 
each Ai is independent of the elements 
of the event algebra generated by  

Aj : ij ∉E G( ){ }



Lovász Local Lemma  
             (Erdős-Lovász 1975) 

 Assume G is a dependency graph for 
A1,A2,…,An, and d=max degree in G 

  If for i=1,2,…,n, P(Ai)<p, and e(d+1)p<1, 
then 
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Lovász Local Lemma (Spencer) 

 Assume G is a dependency graph for 
A1,A2,…,An   

  If there exist x1,x2,…,xn  in [0,1) such that 

   then 
P Ai( ) ≤ xi 1− x j( )

ij∈E G( )
∏
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Negative dependency graphs 

 Assume that A1,A2,…,An are events in a 
probability space Ω.  

 Graph G with V(G)={1,2,…,n} is a 
negative dependency graph for events 
A1,A2,…,An, if   

                       implies 

∀i∀S ⊆ j : ij ∉E G( ){ }
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LLL: Erdős-Spencer 1991, 
Albert-Freeze-Reed 1995, Ku 
 Assume G is a negative dependency 

graph for A1,A2,…,An , exist x1,x2,…,xn  in 
[0,1) such that,                           , then 

 Setting xi=1/(d+1) implies the uniform 
version both for dependency and 
negative dependency 

P Ai( ) ≤ xi 1− x j( )
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Needle in the haystack 

 LLL has been in use for existence 
proofs to exhibit the existence of events 
of tiny probability. Is it good for other 
purposes? 

 Where to find negative dependency 
graphs that are not dependency 
graphs? 



Poisson paradigm 

 Assume that A1,A2,…,An are events in a 
probability space Ω, p(Ai)=pi. Let X  
denote the sum of indicator variables of 
the events. If dependencies are rare, X 
can be approximated with Poisson 
distribution of mean Σ pi.   

 X~Poisson means                               
using k=0, 

P X = k( ) = e−µµ k / k!
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Models for the Poisson paradigm 

 Chen-Stein method 1975-78 
 Janson inequality 1990 
 Brun’s sieve 
 Now: LLL.  Assume G is negative 

dependency graph,  0<ε<0.14.                          

  
∀i :P Ai( ) < ε; P Aj( )
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Two negative dependency graphs 

 H is a complete graph KN  or a complete 
bipartite graph KN,L ; Ω is the uniform 
probability space of maximal matchings 
in H. For a partial matching M, the 
canonical event 

 Canonical events AM and AM* are in 
conflict: M and M* have no common 
extension into maximal matching, i.e.  

AM = F ∈Ω |M ⊆ F{ }

AM ∩ AM * =∅



Main theorem 

 For a graph H=KN or KN,L, and a family 
of canonical events, if the edges of the 
graph G are defined by conflicts, then G 
is a negative dependency graph. 

 This theorem fails to extend for  the 
hexagon H=C6 



Hexagon example 

 Two perfect matchings 

p Ae( ) = p Af( ) = 12

 
p Ae Af( ) = p Ae ∩ Af( )
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Relevance for permutation 
enumeration problems 
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 Assume that A1,A2,…,An are events in a 
probability space Ω.  

 Graph G with V(G)={1,2,…,n}  is an ε–
near-positive dependency graph of the 
events A1,A2,…,An,  
–    
–     

ε-near-positive dependency graphs 

 
ij ∈E(G) implies P Ai ∩ Aj( ) = 0
∀i∀S ⊆ j : ij ∉E G( ){ }
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Quotient graphs  

 Assume G is a negative dependency 
graph for A1,A2,…,An . Assume further 
that V(G) is partitioned into classes such 
that events in the same class are 
disjoint. For every partition class J, 
let               . The quotient graph of G is a 
negative dependency graph for the 
events BJ 

 
BJ = Aj

j∈J




  If the only edges of the quotient graph 
of an ε–near-positive dependency graph 
are loops, then the quotient graph is 
also an ε-near-positive dependency 
graph. 

Quotient graphs of ε-near-positive 
dependency graphs 



Asymptotic results 

 A collection of matchings M is regular, 
if for every i, every vertex is covered di 
times by i-element matchings from M 

 A collection of matchings M is δ-sparse 
(details avoided!) 

 Negative dependency graphs of δ-
sparse collections of matchings are also 
ε-near-positive dependency graphs 



Asymptotic results – a theorem 
 A collection of matchings M in KN or 

KN,N is regular, r is the largest matching 
size, M is δ-sparse. Set                  
over M. Suppose δ=o(µ-1), µ  is 
separated from 0,                      and 

   Then 

µ = P AM( )∑

µ = o Nr−3/2( )
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Consequences for permutation 
enumeration 

 For k fixed, the proportion of k-cycle free 
permutations is  

  (Bender 70’s) If max K grows slowly with 
n, the proportion of permutations free of 
cycles of length from set K is   

1− o 1( )( )e− 1k

1− o 1( )( )e
− 1

k
k∈K
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 Latin rectangles  

 Latin rectangle: k times n array filled 
with entries 1,2,…,n; putting a 
permutation into every row and not 
repeating an entry in any column (k≤n) 

 L(k,n)= number of k times n Latin 
rectangles 

1 3
3 

4 2 5 
3 2 5 4 1 
4 5 1 3 2 



Enumeration of Latin rectangles 

 L(2,n)= n!×(# of derangements) ≈ (n!)2e-1 
 Riordan 1944 L(3,n) ≈ (n!)3e-3 
 Erdős-Kaplansky 1946 

 Yamamoto 1951 extended to 
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Enumeration of Latin rectangles 

 Stein 1978 (using Chen-Stein method) 

 Godsil and McKay 1990 refined the 
asymptotics to make it work for  
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Enumeration of Latin rectangles 

 Skau 1990 (using van der Waerden’s 
inequality for the permanent) 

and with this matched Stein’s lower bound 
on a slightly smaller range:  
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Enumeration of Latin rectangles 

 Quotient graph version of the negative 
dependency graph LLL yields Skau’s 
lower bound: 

    matches the range of Stein’s lower  
    bound:  
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Enumeration of Latin rectangles 

 Quotient graph version of the near ε-
positive dependency graph argument 
yields tight asymptotic upper bound in 
Yamamoto’s range: 
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Relevance for Latin rectangle 
enumeration 

 Try to fill in the fourth row with a 
permutation of [5].  

 Complete bipartite graph: 1st class 
columns, 2nd class entries 

 Canonical events defined by the edges 
11, 13, 14;  23, 22, 25; 34, 35, 31; 42, 
44, 43; 55, 51, 52  

1 3
3 

4 2 5 
3 2 5 4 1 
4 5 1 3 2 



Enumeration of labeled regular 
graphs 
 Bender-Canfield, independently 

Wormald 1978: d fix, nd even 
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Configuration model  
                          (Bollobás 1980) 
 Put nd (nd even) vertices into n equal 

clusters 
 Pick a random matching of Knd  
 Contract every cluster into a single 

vertex getting a multigraph or a simple 
graph 

 Observe that all simple graphs are 
equiprobable 



Enumeration of labeled regular 
graphs 
 Bollobás 1980:  nd even,  

 McKay 1985: for 
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Enumeration of labeled regular 
graphs 
 McKay and Wormald:  nd even,  

 Wormald 1981: fix d≥3, g≥3 girth 
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Theorem 
  In the configuration model, if d≥3 and 

g3d2g-3=o(n), then the probability that the 
resulting random d-regular multigraph 
after the contraction has girth at least g, 
is                              

  hence the number of d-regular graphs 
with girth at least g is 
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Spencer’s joke 

 Spencer’s joke in “Ten Lectures on the 
Probabilistic Method”: uniformly 
selected random function from [a] to [b] 
is injection whp, if b>>a2, but:  

 LLL can show the existence of an 
injection when 2ea < b.                 



Our joke 

 Our joke: using negative dependency 
graph LLL, a uniformly selected random 
function [a] to [a] is injection with 
probability at least 

 Combinatorial proof to the slightly 
weakened Stirling formula 
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Symmetric events 

 Events A1,A2,…,An are symmetric, if the 
probability of their Boolean expressions 
do not change, when Aπ(i) is substituted 
for Ai simultaneously for any 
permutation π. 



A Lemma for symmetric events 

  If events A1,A2,…,An are symmetric  

    then LLL applies with empty negative    
    dependency graph, xi=p1   
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Proof to our joke 
 Consider a uniform random function f 

from [a] to [b] with a≤b. Let Au denote the 
event that f(u) occurs with multiplicity 2 
or higher. 
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