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Overview 

  LLL and its generalizations 
  LLL – an instance of the Poisson paradigm 
  New negative dependency graphs 
  Applications:  

–  Permutation enumeration  
–  Latin rectangle enumeration 
–  Regular graph enumeration 

  A joke 



When none of the events happen 

 Assume that A1,A2,…,An are events in a 
probability space Ω. How can we 
infer            ?  

  If Ai’s are mutually independent, P(Ai)<1, 
then 

  If               , then  
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A way to combine arguments: 

 Assume that A1,A2,…,An are events in a 
probability space Ω.  

 Graph G is a dependency graph of the 
events A1,A2,…,An, if V(G)={1,2,…,n} and 
each Ai is independent of the elements 
of the event algebra generated by  

Aj : ij ∉E G( ){ }



Lovász Local Lemma  
             (Erdős-Lovász 1975) 

 Assume G is a dependency graph for 
A1,A2,…,An, and d=max degree in G 

  If for i=1,2,…,n, P(Ai)<p, and e(d+1)p<1, 
then 
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Lovász Local Lemma (Spencer) 

 Assume G is a dependency graph for 
A1,A2,…,An   

  If there exist x1,x2,…,xn  in [0,1) such that 

   then 
P Ai( ) ≤ xi 1− x j( )

ij∈E G( )
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Negative dependency graphs 

 Assume that A1,A2,…,An are events in a 
probability space Ω.  

 Graph G with V(G)={1,2,…,n} is a 
negative dependency graph for events 
A1,A2,…,An, if   

                       implies 

∀i∀S ⊆ j : ij ∉E G( ){ }
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LLL: Erdős-Spencer 1991, 
Albert-Freeze-Reed 1995, Ku 
 Assume G is a negative dependency 

graph for A1,A2,…,An , exist x1,x2,…,xn  in 
[0,1) such that,                           , then 

 Setting xi=1/(d+1) implies the uniform 
version both for dependency and 
negative dependency 

P Ai( ) ≤ xi 1− x j( )
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Needle in the haystack 

 LLL has been in use for existence 
proofs to exhibit the existence of events 
of tiny probability. Is it good for other 
purposes? 

 Where to find negative dependency 
graphs that are not dependency 
graphs? 



Poisson paradigm 

 Assume that A1,A2,…,An are events in a 
probability space Ω, p(Ai)=pi. Let X  
denote the sum of indicator variables of 
the events. If dependencies are rare, X 
can be approximated with Poisson 
distribution of mean Σ pi.   

 X~Poisson means                               
using k=0, 

P X = k( ) = e−µµ k / k!
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Models for the Poisson paradigm 

 Chen-Stein method 1975-78 
 Janson inequality 1990 
 Brun’s sieve 
 Now: LLL.  Assume G is negative 

dependency graph,  0<ε<0.14.                          
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Two negative dependency graphs 

 H is a complete graph KN  or a complete 
bipartite graph KN,L ; Ω is the uniform 
probability space of maximal matchings 
in H. For a partial matching M, the 
canonical event 

 Canonical events AM and AM* are in 
conflict: M and M* have no common 
extension into maximal matching, i.e.  

AM = F ∈Ω |M ⊆ F{ }

AM ∩ AM * =∅



Main theorem 

 For a graph H=KN or KN,L, and a family 
of canonical events, if the edges of the 
graph G are defined by conflicts, then G 
is a negative dependency graph. 

 This theorem fails to extend for  the 
hexagon H=C6 



Hexagon example 

 Two perfect matchings 

p Ae( ) = p Af( ) = 12
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Relevance for permutation 
enumeration problems 
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 Assume that A1,A2,…,An are events in a 
probability space Ω.  

 Graph G with V(G)={1,2,…,n}  is an ε–
near-positive dependency graph of the 
events A1,A2,…,An,  
–    
–     

ε-near-positive dependency graphs 

 
ij ∈E(G) implies P Ai ∩ Aj( ) = 0
∀i∀S ⊆ j : ij ∉E G( ){ }
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Quotient graphs  

 Assume G is a negative dependency 
graph for A1,A2,…,An . Assume further 
that V(G) is partitioned into classes such 
that events in the same class are 
disjoint. For every partition class J, 
let               . The quotient graph of G is a 
negative dependency graph for the 
events BJ 

 
BJ = Aj

j∈J




  If the only edges of the quotient graph 
of an ε–near-positive dependency graph 
are loops, then the quotient graph is 
also an ε-near-positive dependency 
graph. 

Quotient graphs of ε-near-positive 
dependency graphs 



Asymptotic results 

 A collection of matchings M is regular, 
if for every i, every vertex is covered di 
times by i-element matchings from M 

 A collection of matchings M is δ-sparse 
(details avoided!) 

 Negative dependency graphs of δ-
sparse collections of matchings are also 
ε-near-positive dependency graphs 



Asymptotic results – a theorem 
 A collection of matchings M in KN or 

KN,N is regular, r is the largest matching 
size, M is δ-sparse. Set                  
over M. Suppose δ=o(µ-1), µ  is 
separated from 0,                      and 

   Then 
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Consequences for permutation 
enumeration 

 For k fixed, the proportion of k-cycle free 
permutations is  

  (Bender 70’s) If max K grows slowly with 
n, the proportion of permutations free of 
cycles of length from set K is   

1− o 1( )( )e− 1k

1− o 1( )( )e
− 1

k
k∈K
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 Latin rectangles  

 Latin rectangle: k times n array filled 
with entries 1,2,…,n; putting a 
permutation into every row and not 
repeating an entry in any column (k≤n) 

 L(k,n)= number of k times n Latin 
rectangles 

1 3
3 

4 2 5 
3 2 5 4 1 
4 5 1 3 2 



Enumeration of Latin rectangles 

 L(2,n)= n!×(# of derangements) ≈ (n!)2e-1 
 Riordan 1944 L(3,n) ≈ (n!)3e-3 
 Erdős-Kaplansky 1946 

 Yamamoto 1951 extended to 
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Enumeration of Latin rectangles 

 Stein 1978 (using Chen-Stein method) 

 Godsil and McKay 1990 refined the 
asymptotics to make it work for  
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Enumeration of Latin rectangles 

 Skau 1990 (using van der Waerden’s 
inequality for the permanent) 

and with this matched Stein’s lower bound 
on a slightly smaller range:  
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Enumeration of Latin rectangles 

 Quotient graph version of the negative 
dependency graph LLL yields Skau’s 
lower bound: 

    matches the range of Stein’s lower  
    bound:  
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Enumeration of Latin rectangles 

 Quotient graph version of the near ε-
positive dependency graph argument 
yields tight asymptotic upper bound in 
Yamamoto’s range: 
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Relevance for Latin rectangle 
enumeration 

 Try to fill in the fourth row with a 
permutation of [5].  

 Complete bipartite graph: 1st class 
columns, 2nd class entries 

 Canonical events defined by the edges 
11, 13, 14;  23, 22, 25; 34, 35, 31; 42, 
44, 43; 55, 51, 52  

1 3
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4 2 5 
3 2 5 4 1 
4 5 1 3 2 



Enumeration of labeled regular 
graphs 
 Bender-Canfield, independently 

Wormald 1978: d fix, nd even 
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Configuration model  
                          (Bollobás 1980) 
 Put nd (nd even) vertices into n equal 

clusters 
 Pick a random matching of Knd  
 Contract every cluster into a single 

vertex getting a multigraph or a simple 
graph 

 Observe that all simple graphs are 
equiprobable 



Enumeration of labeled regular 
graphs 
 Bollobás 1980:  nd even,  

 McKay 1985: for 
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Enumeration of labeled regular 
graphs 
 McKay and Wormald:  nd even,  

 Wormald 1981: fix d≥3, g≥3 girth 
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Theorem 
  In the configuration model, if d≥3 and 

g3d2g-3=o(n), then the probability that the 
resulting random d-regular multigraph 
after the contraction has girth at least g, 
is                              

  hence the number of d-regular graphs 
with girth at least g is 
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Spencer’s joke 

 Spencer’s joke in “Ten Lectures on the 
Probabilistic Method”: uniformly 
selected random function from [a] to [b] 
is injection whp, if b>>a2, but:  

 LLL can show the existence of an 
injection when 2ea < b.                 



Our joke 

 Our joke: using negative dependency 
graph LLL, a uniformly selected random 
function [a] to [a] is injection with 
probability at least 

 Combinatorial proof to the slightly 
weakened Stirling formula 
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Symmetric events 

 Events A1,A2,…,An are symmetric, if the 
probability of their Boolean expressions 
do not change, when Aπ(i) is substituted 
for Ai simultaneously for any 
permutation π. 



A Lemma for symmetric events 

  If events A1,A2,…,An are symmetric  

    then LLL applies with empty negative    
    dependency graph, xi=p1   

   
pi = P Aj

j=1

i


⎛

⎝⎜
⎞

⎠⎟
   and   p0 = 1,

∀i = 1,2,...,n −1       pi
2 ≤ pi−1pi+1



Proof to our joke 
 Consider a uniform random function f 

from [a] to [b] with a≤b. Let Au denote the 
event that f(u) occurs with multiplicity 2 
or higher. 
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