Lovász Local Lemma – a new tool to asymptotic enumeration?

Linyuan Lincoln Lu László Székely University of South Carolina

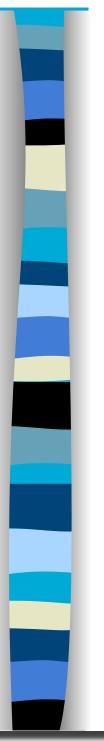
Supported by NSF DMS

Overview

- LLL and its generalizations
- LLL an instance of the Poisson paradigm
- New negative dependency graphs
- Applications:
 - Permutation enumeration
 - Latin rectangle enumeration
 - Regular graph enumeration
- A joke

When none of the events happen

- Assume that A_1, A_2, \dots, A_n are events in a probability space Ω . How can we infer $\bigcap_{i=1}^{n} \overline{A_i} \neq \emptyset$?
- If A_i 's are mutually independent, $P(A_i) < 1$, then $P\left(\bigcap_{i=1}^{n} \overline{A_i}\right) = \prod_{i=1}^{n} P\left(\overline{A_i}\right) = \prod_{i=1}^{n} (1 - P(A_i)) > 0$ If $\sum_{i=1}^{n} P(A_i) < 1$, then $P\left(\bigcap_{i=1}^{n} \overline{A_i}\right) = P\left(\bigcup_{i=1}^{n} A_i\right) = 1 - P\left(\bigcup_{i=1}^{n} A_i\right) \ge 1 - \sum_{i=1}^{n} P(A_i) > 0$



A way to combine arguments:

- Assume that A_1, A_2, \dots, A_n are events in a probability space Ω .
- Graph *G* is a dependency graph of the events $A_1, A_2, ..., A_n$, if $V(G) = \{1, 2, ..., n\}$ and each A_i is independent of the elements of the event algebra generated by $\{A_j : ij \notin E(G)\}$

Lovász Local Lemma (Erdős-Lovász 1975)

Assume G is a dependency graph for A₁,A₂,...,A_n, and d=max degree in G
If for *i*=1,2,...,n, P(A_i)<p, and e(d+1)p<1, then

 $P\left(\bigcap_{i=1}^{n}\overline{A_{i}}\right) > 0$

Lovász Local Lemma (Spencer)

Assume G is a dependency graph for A₁, A₂,..., A_n
If there exist x₁, x₂, ..., x_n in [0,1) such that $P(A_i) \le x_i \prod_{ij \in E(G)} (1-x_j)$ then

$$P\left(\bigcap_{i=1}^{n}\overline{A_{i}}\right) \geq \prod_{i=1}^{n} (1-x_{i}) > 0$$

Negative dependency graphs

- Assume that A_1, A_2, \dots, A_n are events in a probability space Ω .
- Graph G with $V(G) = \{1, 2, ..., n\}$ is a negative dependency graph for events $A_1, A_2, ..., A_n$, if $\forall i \forall S \subseteq \{j : ij \notin E(G)\}$ $P\left(\bigcap_{j \in S} \overline{A_j}\right) > 0$ implies $P\left(A_i \middle| \bigcap_{j \in S} \overline{A_j}\right) \le P(A_i)$

LLL: Erdős-Spencer 1991, Albert-Freeze-Reed 1995, Ku

Assume *G* is a negative dependency graph for A_1, A_2, \dots, A_n , exist x_1, x_2, \dots, x_n in [0,1) such that, $P(A_i) \le x_i \prod_{ij \in E(G)} (1-x_j)$, then $P\left(\bigcap_{i=1}^n \overline{A_i}\right) \ge \prod_{i=1}^n (1-x_i) > 0$

Setting x_i=1/(d+1) implies the uniform version both for dependency and negative dependency

Needle in the haystack

- LLL has been in use for existence proofs to exhibit the existence of events of tiny probability. Is it good for other purposes?
- Where to find negative dependency graphs that are not dependency graphs?

Poisson paradigm

• Assume that A_1, A_2, \dots, A_n are events in a probability space Ω , $p(A_i) = p_i$. Let X denote the sum of indicator variables of the events. If dependencies are rare, X can be approximated with Poisson distribution of mean Σp_i .

• X~Poisson means $P(X = k) = e^{-\mu} \mu^k / k!$ using k=0, $P\left(\bigcap_{i=1}^n \overline{A_i}\right) \approx e^{-\mu} = e^{-\sum_{i=1}^n p_i}$

Models for the Poisson paradigm

- Chen-Stein method 1975-78
- Janson inequality 1990
- Brun's sieve
- Now: LLL. Assume G is negative dependency graph, $0 < \varepsilon < 0.14$.

 $\forall i : P(A_i) < \varepsilon; \sum_{ij \in E(G)} P(A_j) < \varepsilon \text{ imply } P\left(\bigcap_{j=1}^n \overline{A_j}\right) \ge e^{-(1+3\varepsilon)\sum_{j=1}^n P(A_j)}$

Two negative dependency graphs

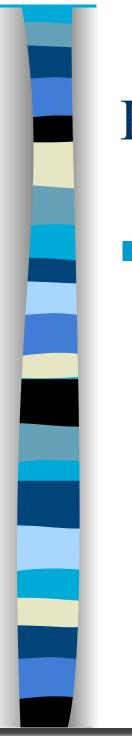
■ *H* is a complete graph K_N or a complete bipartite graph $K_{N,L}$; Ω is the uniform probability space of maximal matchings in *H*. For a partial matching *M*, the canonical event $A_M = \{F \in \Omega \mid M \subseteq F\}$

Canonical events A_M and A_{M^*} are in conflict: M and M^* have no common extension into maximal matching, i.e. $A_M \cap A_{M^*} = \emptyset$

Main theorem

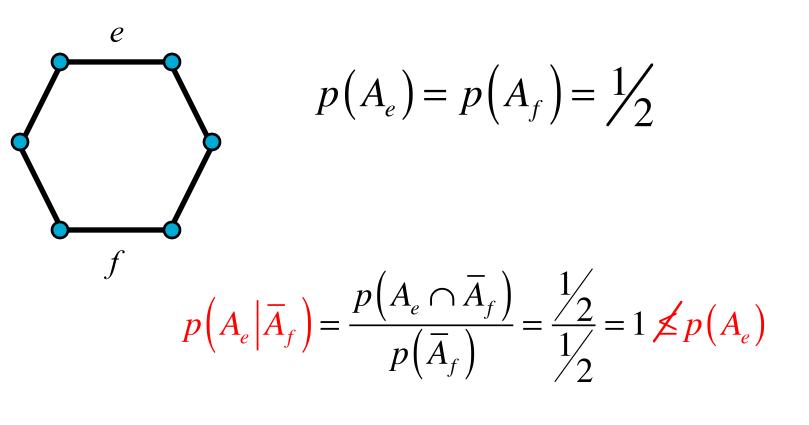
For a graph H=K_N or K_{N,L}, and a family of canonical events, if the edges of the graph G are defined by conflicts, then G is a negative dependency graph.

This theorem fails to extend for the hexagon $H=C_6$



Hexagon example

Two perfect matchings

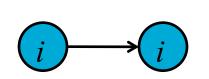


Relevance for permutation enumeration problems

Derangements avoid:

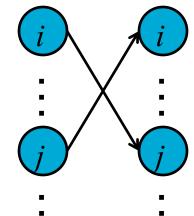
avoi

- : :
- •

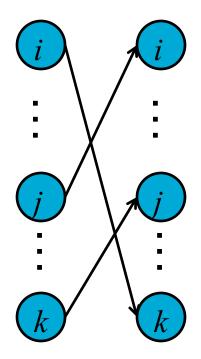


- . .
- : :

2-cycle free avoids:



3-cycle free avoids:



ε -near-positive dependency graphs

- Assume that A_1, A_2, \dots, A_n are events in a probability space Ω .
- Graph G with $V(G) = \{1, 2, ..., n\}$ is an \mathcal{E} near-positive dependency graph of the events $A_1, A_2, ..., A_n$,
 - $ij \in E(G) \text{ implies } P(A_i \cap A_j) = 0$ $- \forall i \forall S \subseteq \{j : ij \notin E(G)\}$ $P(\bigcap_{i \in S} \overline{A_j}) > 0 \text{ implies } P(A_i | \bigcap_{i \in S} \overline{A_j}) \ge (1 - \varepsilon) P(A_i)$

Quotient graphs

Assume *G* is a negative dependency graph for $A_1, A_2, ..., A_n$. Assume further that V(G) is partitioned into classes such that events in the same class are disjoint. For every partition class *J*, let $B_J = \bigcup A_j$. The quotient graph of *G* is a negative dependency graph for the events B_J Quotient graphs of ε -near-positive dependency graphs

If the only edges of the quotient graph of an *ɛ*-near-positive dependency graph are loops, then the quotient graph is also an *ɛ*-near-positive dependency graph.

Asymptotic results

- A collection of matchings *M* is regular, if for every *i*, every vertex is covered *d_i* times by *i*-element matchings from *M*
- A collection of matchings \mathcal{M} is δ -sparse (details avoided!)
- Negative dependency graphs of δsparse collections of matchings are also ε-near-positive dependency graphs

Asymptotic results – a theorem

A collection of matchings \mathcal{M} in K_N or $K_{N,N}$ is regular, r is the largest matching size, \mathcal{M} is δ -sparse. Set $\mu = \sum P(A_{M})$ over \mathcal{M} . Suppose $\delta = o(\mu^{-1}), \mu$ is separated from 0, $\mu = o(\sqrt{N}r^{-3/2})$ and $r = o\left(\sqrt{N}\right)$ $P\left(\bigcap_{M}\overline{A_{M}}\right) = (1+o(1))e^{-\mu}$ Then

Consequences for permutation enumeration

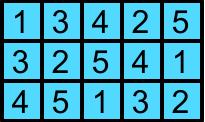
For k fixed, the proportion of k-cycle free permutations is $(1 - o(1))e^{-\frac{1}{k}}$

(Bender 70's) If max K grows slowly with n, the proportion of permutations free of cycles of length from set K is

$$(1-o(1))e^{-\sum_{k\in K}\frac{1}{k}}$$

Latin rectangles

Latin rectangle: *k* times *n* array filled with entries 1,2,...,*n*; putting a permutation into every row and not repeating an entry in any column (*k*≤*n*)
 L(*k*,*n*)= number of *k* times *n* Latin rectangles



L(2,n)= n!×(# of derangements) ≈ (n!)²e⁻¹
Riordan 1944 L(3,n) ≈ (n!)³e⁻³
Erdős-Kaplansky 1946
L(k,n) ~ (n!)^k e^{-{\binom{k}{2}}} for k = o((log n)^{3/2})
Yamamoto 1951 extended to k = o(n^{1/3-ε})

Stein 1978 (using Chen-Stein method) $L(k,n) \sim (n!)^{k} e^{-\binom{k}{2} - \frac{k^{3}}{6n}} \text{ for } k = o(n^{\frac{1}{2}})^{k}$

Godsil and McKay 1990 refined the asymptotics to make it work for

$$k = o\left(n^{\frac{6}{7}}\right)$$

Skau 1990 (using van der Waerden's inequality for the permanent) $(n!)^k \prod_{r=1}^{k-1} \left(1 - \frac{r}{n}\right)^n \le L(k,n)$

and with this matched Stein's lower bound on a slightly smaller range: $L(k,n) \ge (1-o(1))(n!)^k e^{-\binom{k}{2} - \frac{k^3}{6n}}$

for
$$k = o\left(n^{\frac{1}{2}}/\log n\right)$$

Quotient graph version of the negative dependency graph LLL yields Skau's lower bound:

 $(n!)^{k} \prod_{r=1}^{k-1} \left(1 - \frac{r}{n}\right)^{n} \le L(k,n)$ matches the range of Stein's lower bound: $L(k,n) \ge (1 - o(1))(n!)^{k} e^{-\left(\frac{k}{2}\right) - \frac{k^{3}}{6n}}$ for $k = o\left(\frac{n^{1/2}}{\log n}\right)$

Quotient graph version of the near *ε*positive dependency graph argument yields tight asymptotic upper bound in Yamamoto's range:

$$L(k,n) \leq (1-o(1))(n!)^k e^{-\binom{k}{2}} \quad \text{for } k = o\left(n^{\frac{1}{3}-\varepsilon}\right)$$

Relevance for Latin rectangleenumeration1342532541

- Try to fill in the fourth row with a permutation of [5].
- Complete bipartite graph: 1st class columns, 2nd class entries
- Canonical events defined by the edges 11, 13, 14; 23, 22, 25; 34, 35, 31; 42, 44, 43; 55, 51, 52

Enumeration of labeled regular graphs

Bender-Canfield, independently Wormald 1978: *d* fix, *nd* even

 $\sqrt{2}e^{(1-d^{2})/4}\left(\frac{d^{d}n^{d}}{e^{d}(d!)^{2}}\right)^{\frac{n}{2}}$

Configuration model (Bollobás 1980)

- Put nd (nd even) vertices into n equal clusters
- Pick a random matching of K_{nd}
- Contract every cluster into a single vertex getting a multigraph or a simple graph
- Observe that all simple graphs are equiprobable

Enumeration of labeled regular graphs

Bollobás 1980: nd even, $d < \sqrt{2\log n}$

$$(1+o(1))e^{(1-d^2)/4}\left(\frac{(dn-1)!!}{(d!)^n}\right)$$

• McKay 1985: for $d = o(n^{\frac{1}{3}})$

Enumeration of labeled regular graphs

McKay and Wormald: nd even, $d = o(n^{\frac{1}{2}})$ $(1+o(1))e^{(1-d^{2})/4-d^{3}/(12n)+O(d^{2}/n)}\left(\frac{(dn-1)!!}{(d!)^{n}}\right)$ Wormald 1981: fix $d \ge 3$, $g \ge 3$ girth

$$(1+o(1))e^{-\sum_{i=1}^{g-1}\frac{(d-1)^i}{2i}}\frac{(dn-1)!!}{(d!)^n}$$

Theorem

■ In the configuration model, if $d \ge 3$ and $g^3 d^{2g-3} = o(n)$, then the probability that the resulting random *d*-regular multigraph after the contraction has girth at least *g*, is $\left(1+o(1)\right)e^{-\sum_{i=1}^{g-1}\frac{(d-1)^i}{2i}}$

hence the number of d-regular graphs with girth at least g is

$$(1+o(1))e^{-\sum_{i=1}^{g-1}\frac{(d-1)^{i}}{2i}}\frac{(dn-1)!}{(d!)^{n}}$$

Spencer's joke

Spencer's joke in "Ten Lectures on the Probabilistic Method": uniformly selected random function from [a] to [b] is injection whp, if b>>a², but:

LLL can show the existence of an injection when 2ea < b.</p>

Our joke

Our joke: using negative dependency graph LLL, a uniformly selected random function [a] to [a] is injection with probability at least

$$\frac{a!}{a^a} > \left(\frac{1}{e} - o(1)\right)^a$$

Combinatorial proof to the slightly weakened Stirling formula

Symmetric events

Events $A_1, A_2, ..., A_n$ are symmetric, if the probability of their Boolean expressions do not change, when $A_{\pi(i)}$ is substituted for A_i simultaneously for any permutation π .

A Lemma for symmetric events

If events A_1, A_2, \dots, A_n are symmetric $p_i = P\left(\bigcap_{j=1}^i \overline{A_j}\right)$ and $p_0 = 1$,

$$\forall i = 1, 2, ..., n-1$$
 $p_i^2 \le p_{i-1}p_{i+1}$

then LLL applies with empty negative dependency graph, $x_i = p_1$

Proof to our joke

Consider a uniform random function ffrom [a] to [b] with $a \le b$. Let A_u denote the event that f(u) occurs with multiplicity 2 or higher.

$$P(A_{u}) = 1 - b \frac{(b-1)^{a-1}}{b^{a}} \text{ and } p_{i} = i! \begin{pmatrix} b \\ i \end{pmatrix} \frac{(b-i)^{a-i}}{b^{a}}$$
$$P(inj) \ge \left(1 - P(A_{1})\right)^{a} = \left(1 - \frac{1}{a}\right)^{a(a-1)} = \left(\frac{1}{e} - o(1)\right)^{a}$$

