HARMONIC FUNCTIONS
AND THE CHROMATIC
POLYNOMIAL

R. Kenyon (Brown)

based on joint work with A. Abrams, W. Lam



The chromatic polynomial xa(n) of a graph G is the number of proper colorings

with n colors. (adjacent vertices have different colors)

x(n) =n(n—1)(n—2)

Y satisfies a contraction-deletion rule:

xa(n) = Xg—e(n) — XG/e(n)

but is #P-hard to compute in general.



The Dirichlet problem

A graph G = (V, F)

c: EE— Rs the edge conductances

B C V boundary vertices 4 2

u : B — R boundary values / \
Find f : V — R harmonic on V' \ B

and f|p = u.

0=Af(x) = Zce(f(f) — f(y))

Y~T
f is the unique function with f|g = w minimizing the Dirichlet energy
E(f) =D celf(z)— f(y)

E=TY e e
edge energy



A harmonic function induces a compatible orientation: an acyclic orientation
with no internal sources or sinks, and no oriented paths from lower boundary
values to higher boundary values. “current flows downhill”

We let > be the set of compatible orientations

How many are there?



Let F C RY be the set of functions with boundary values v and no internal
extrema.

Then
where F, = {f € F | sign(df) = o}.
The F, are convex polytopes.
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Fixed energy problem:




Can we adjust edge conductances so that all bulbs

burn with the same brightness?



Let W : (0,00)" — [0,00)" be the map from conductances to energies.
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Let W : (0,00)" — [0,00)" be the map from conductances to energies.

Theorem 1: For any o € ¥ and {&£. > 0} there is a unique

choice of conductances {c.} for which the associated harmonic function

realizes this data.

exactly

Thm 2: The harmonic functions A with energies {&.} are’the solutions to the
system of equations

Ee : :
Vee VB, 0= Z D) — 1) the enharmonic equation

“energy — harmonic”

Yy~

Thm 3: The number of solutions N = |X| satisfies the contraction-deletion rule
Ng = Ng_e + NG/e-



Cor: Let G be obtained from G by adding k£ vertices as boundary, attached to
all vertices of G. Then for any choice of k distinct boundary values, the number
of compatible orientations is xg(1 — k).

V2 /s e

G



Lemma: The Jacobian determinant of ¥ has the form

det Jy = | ] (h(z) — h(y))*.

e=xy

Corollary:
_ 1 1l (h(z) — h(y))®

m e=xy

where the integral is over the m-simplex A,, of conductances summing to 1,

and Z = 3, ey (h(z) — h(y))>.



Proof of Theorems 1 and 2:

0= Ah(x) — Z Ce(h(x) — h(y)) recall £,y = ¢y (h(x) — h(y))?
Yy~
PN
2 @)~ hy)

(One needs also show that all solutions are real.)

Solutions of the enharmonic equation are critical points of the functional

Ee

M(h) = | [ In(z) = h(y)

Note log M (h) is strictly concave on each polytope F, = {h | sign(dh) = o}.




Proof of Theorem 3:

Recall that & = c.(h(x) — h(y))? = I.V, where I, = c.(h(z) — h(y)) and

Ve — h(l‘) _ h(y)
When & — 0, either I, — 0 or V, — 0 (or both). In the first case, delete
the edge; in the second contract the edge.

Conversely, the operation of contracting or deleting is reversible by adding
in an edge of small energy.




APPLICATIONS



Smith diagram of a planar network
(with a harmonic function)
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voltage = y-coordinate
edge = rectangle
current = width
conductance = aspect ratio
energy = area



This graph has 12 acyclic orientations with source at 1 and sink at O.
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width(1) is the root of a polynomial:

2315250000212 — 1074386250002 +2230924692500210 —273612732417502° +
22035069500482528 —12253945934097002 +48171138760886402° —134683004997072002° +
265540023013847042*—359852198771312642°+31817913970765824 2% —16489700865736704 2+
3791571715620864 = 0
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One of the ~ 10°%” area-1 rectangulations based on the 40 x 40 grid
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Cor. If a polygon P can be tiled with rectangles of rational area,
horizontal lengths are in a totally real extension field of Q[vy, ..., vg].

21/3
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2

DO | —

91/3

N | —

Area 1 but not tileable.



Bipolar orientations on Z* and square ice
(with Miller, Sheffield, Wilson)

- I~
V< = Ve
Ve -< Y >y




€ € A< € €

add a row of edges around the boundary oriented N and W



€ B A< B -

From each black vertex, the two outgoing green arrows separate
the incoming and outgoing black arrows
From each face center, outgoing green arrows point to the face max and min.



€ e A< e e

Bend outgoing edges right it from vertices, lett if from faces.



The associated peano curve, colored according to distance traveled
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