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Challenges in Discrete Optimization

why need for new tools
(in particular from algebra, geometry and topology).
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What is Discrete Optimization?

A part of Applied Mathematics, its main problem: Given a finite set X , each
of whose elements has an assigned cost, price or optimality criteria, find the
cheapest such object.

Problems come from bioinformatics, industrial engineering, management,
operations planning, finances, any area where the best solution is required!

History starts with WWII Initial work by Kantorovich (1939), T.C Koopmans
(1941), von Neumann (1947), Dantzig (1950), Ford and Fulkerson (1956).
Invention of linear programming and the simplex method.
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A Useful Example

The Transportation problem: A company builds laptops in four factories,
each with certain supply power. Four cities have laptop demands. There is a
cost ci,j for transporting a laptop from factory i to city j . What is the best
assignment of transport in order to minimize the cost?

ON FOUR CITIES

DEMANDS

220

215

93

64

108

 286

71

127

SUPPLIES

BY FACTORIES
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ILP model: equations and inequalities

Let xi,j be a variable indicating number of laptops factory i provides to city j .
xi,j can only take non-negative integer values, xi,j ≥ 0.

Then Since factory i produces ai laptops we have

n∑
j=1

xi,j = ai , for all i = 1, . . . , n.

and since city j needs bj laptops

n∑
i=1

xi,j = bj , for all j = 1, . . . , n.

Now we minimize
∑

ci,jxi,j .
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Overview LINEAR Discrete Optimization

Efficient computation with Convex Sets & Lattices ⇐⇒ Efficient Optimization
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At the beginning there was...

Linear programs

max c>x

s.t. Ax ≤ b

max c>

Easy
(polynomial-time

solvable)

Special integer programs

max c>x

s.t. Ax ≤ b

all xi integer

Matrix A is SPECIAL!

Medium
(can be easy or hard)

Network problems
Fixed dimension

knapsacks
0-1 matrices

Integer programs

max c>x

s.t. Ax ≤ b

all xi integer

max c>

Hard
(NP-hard)
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Integer Linear Programming: The state of the art

Traditional Algorithms

Dual (polyhedral) techniques

max c>

x2

x1

x0max c>

x2

x0

x1

Cutting plane algorithms
– based on polyhedral theory

Enumeration

max c> x0max c> x0max c> x0

Branch-and-bound

Adhoc methods

special structure
(e.g. network,
matroids, etc.)

Mathematical modelling – Strong initial IP formulation
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OUR WISH:

Want to handle more complicated

Constraints and Objective functions

() November 5, 2011 10 / 36



Example: Non-linear transportation polytopes

1 In the traditional transportation problem cost at an edge is a constant. Thus
we optimize a linear function.

2 but due to congestion or heavy traffic or heavy communication load the
transportation cost on an edge could be a non-linear function of the flow at
each edge.

3 For example cost at each edge is fij(xij) = cij |xij |aij for suitable constant aij .
This results on a non-linear function

∑
fij which is much harder to minimize.
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Reality is NON-LINEAR and worse!!

Non-linear Discrete Optimization

max/min f (x1, . . . , xd)

subject to gj(x1, . . . , xd) ≤ 0,

for j = 1 . . . s, and with

with xi integer

with f , gj Non-Linear

WHAT CAN BE DONE IN THIS
GENERAL CONTEXT??

Prove good theorems? Are there
efficient algorithms?

BAD NEWS: The problem is
INCREDIBLY HARD
Theorem It is UNDECIDABLE
already when f ,gi ’s are
arbitrary polynomials (Jeroslow,
1979).

EVEN WORSE
Theorem: It undecidable even with
number of variables=10.
(Matiyasevich and Davis 1982).

THERE IS HOPE with good
structure:
Theorem: For fixed number of
variables AND convex polynomials
f , gi problem can be solved in
polynomial time

(Khachiyan and Porkolab, 2000)
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How about polyhedral constraints non-linear objective??

Let f be a multivariate polynomial function,

max f(x)

s.t. Ax ≤ b

Hard
(NP-hard)

Special programs

max f(x)

s.t. Ax ≤ b

all xi integer

Matrix A is SPECIAL!

???
We study TWO

special cases

max f(x)

s.t. Ax ≤ b

all xi integer

Hard
(NP-hard)
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Algebraic Geometric

Ideas in Optimization
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Special Assumption I : FIXED DIMENSION

Problem type

max f (x1, . . . , xd)

subject to (x1, . . . , xd) ∈ P ∩ Zd ,

where

P is a polytope (bounded
polyhedron) given by linear
constraints,

f is a (multivariate)
polynomial function
non-negative over P ∩ Zd ,

the dimension d is fixed.

Prior Work

Integer Linear Programming can be
solved in polynomial time

(H. W. Lenstra Jr, 1983)

Convex polynomials f can be
minimized in polynomial time

(Khachiyan and Porkolab, 2000)

Optimizing an arbitrary degree-4
polynomial f for d = 2 is NP-hard

WHAT CAN BE PROVED IN THIS
CASE??
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Applications of Barvinok’s Algorithms
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Idea: New Representation of Lattice Points

Given K ⊂ Rd we define the formal power series

f (K ) =
∑

α∈K∩Zd

zα1
1 zα2

2 . . . zαn
n .

Think of the lattice points as monomials!!! EXAMPLE: (7, 4,−3) is z7
1 z4

2 z−3
3 .

Theorem (see R. Stanley EC Vol 1) Given K = {x ∈ Rn|Ax = b, Bx ≤ b′}
where A, B are integral matrices and b, b′ are integral vectors, The
generating function f (K ) can be encoded as rational function.

GOOD NEWS: ALL the lattice points of the polyhedron K , be encoded in a
sum of rational functions efficiently!!!
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Barvinok’s short rational generating functions

Generating functions

gP(z) = z0 + z1 + z2 + z3 + . . . zM

=
1− zM

1− z
for z 6= 1

Theorem (Alexander Barvinok, 1994)

Let the dimension d be fixed. There is a
polynomial-time algorithm for computing a
representation of the generating function

gP(z1, . . . , zd) =
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Example

Let P be the square with vertices V1 = (0, 0), V2 = (5000, 0), V3 = (5000, 5000),
and V4 = (0, 5000).

The generating function f (P) has over 25,000,000 monomials,
f (P) = 1 + z1 + z2 + z1

1 z2
2 + z2

1 z2 + · · ·+ z5000
1 z5000

2 ,
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But it can be written using only four rational functions

1

(1− z1) (1− z2)
+

z1
5000

(1− z1
−1) (1− z2)

+
z2

5000

(1− z2
−1) (1− z1)

+
z1

5000z2
5000

(1− z1
−1) (1− z2

−1)

Also, f (tP, z) is

1

(1− z1) (1− z2)
+

z1
5000·t

(1− z1
−1) (1− z2)

+
z2

5000·t

(1− z2
−1) (1− z1)

+
z1

5000·tz2
5000·t

(1− z1
−1) (1− z2

−1)
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Rational Function of a pointed Cone

EXAMPLE: we have d = 2 and c1 = (1, 2), c2 = (4,−1). We have:

f (K ) =
z4
1 z2 + z3

1 z2 + z2
1 z2 + z1z2 + z4

1 + z3
1 + z2

1 + z1 + 1

(1− z1z2
2 )(1− z4

1 z−1
2 )

.
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Theorem (FPTAS for Integer Polynomial Maximization)

Let the dimension d be fixed. There exists an algorithm whose input data are

a polytope P ⊂ Rd , given by rational linear inequalities, and

a polynomial f ∈ Z[x1, . . . , xd ] with integer coefficients and maximum total
degree D that is non-negative on P ∩ Zd

with the following properties.
1 For a given k , it computes in running time polynomial in k, the encoding size

of P and f , and D lower and upper bounds Lk ≤ f (xmax) ≤ Uk satisfying

Uk − Lk ≤
(

k

√
|P ∩ Zd | − 1

)
· f (xmax).

2 For k = (1 + 1/ε) log(|P ∩ Zd |), the bounds satisfy

Uk − Lk ≤ ε f (xmax),

and they can be computed in time polynomial in the input size, the total
degree D, and 1/ε.

3 By iterated bisection of P ∩ Zd , it constructs a feasible solution xε ∈ P ∩ Zd

with ∣∣f (xε)− f (xmax)
∣∣ ≤ εf (xmax).
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Differential operators on generating functions

The Euler differential operator
(
z d

dz

)
maps:

g(z) =
D∑

j=0

gjz
j 7−→ z

d
dz

g(z) =
D∑

j=0

(j · gj)z j

gP(z) = z0 + z1 + z2 + z3 + z4

=
1

1− z
− z5

1− z

Apply differential operator:(
z

d
dz

)
gP(z) = 1z1 + 2z2 + 3z3 + 4z4

=
1

(1− z)2
− −4z5 + 5z4

(1− z)2

Apply differential operator again:(
z

d
dz

)(
z

d
dz

)
gP(z) = 1z1 +4z2 +9z3 +16z4

=
z + z2

(1− z)3
− 25z5 − 39z6 + 16z7

(1− z)3
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Differential operators on generating functions

Lemma

f (x1, . . . , xd) =
∑
β

cβxβ ∈ Z[x1, . . . , xd ]

can be converted to a differential operator

Df = f

(
z1

∂

∂z1
, . . . , zd

∂

∂zd

)
=
∑
β

cβ

(
z1

∂

∂z1

)β1

. . .

(
zd

∂

∂zd

)βd

which maps

g(z) =
∑
α∈S

zα 7−→ (Df g)(z) =
∑
α∈S

f (α)zα.

Theorem

Let gP(z) be the Barvinok generating function of the lattice points of P. Let f be
a polynomial in Z[x1, . . . , xd ] of maximum total degree D.
We can compute, in polynomial time in D and the size of the input data, a
Barvinok rational function representation gP,f (z) for

∑
α∈P∩Zd f (α)zα.
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Graver Bases
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Graver Bases Algorithms

We are interested on optimization of a convex function over
{x ∈ Zn : Ax = b, x ≥ 0}. We will use basic Algebraic Geometry.

For the lattice L(A) = {x ∈ Zn : Ax = 0} introduce a natural partial order on
the lattice vectors.

For u, v ∈ Zn. u is conformally smaller than v , denoted u < v , if |ui | ≤ |vi |
and uivi ≥ 0 for i = 1, . . . , n.
Eg: (3,−2,−8, 0, 8) < (4,−3,−9, 0, 9), incomparable to (−4,−3, 9, 1,−8).
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Equivalent to the computation of several Hilbert bases computations.
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The Graver basis of an integer matrix A is the set of conformal-minimal
nonzero integer dependencies on A.

Example: If A = [1 2 1] then its Graver basis is

±{[2,−1, 0], [0,−1, 2], [1, 0,−1], [1,−1, 1]}

.

The fastest algorithm to compute Graver bases is based on a completion and
project-and-lift method (Got Groebner bases? ). Implemented in 4ti2 (by R.
Hemmecke and P. Malkin).

Graver bases contain, and generalize, the LP test set given by the circuits of
the matrix A. Circuits contain all possible edges of polyhedra in the family

P(b) := {x | Ax = b, x ≥ 0}

.

Theorem The Graver basis contains all edges for all integer hulls
conv({x | Ax = b, x ≥ 0, x ∈ Zn}) as b changes.
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For a fixed cost vector c , we can visualize a Graver basis of of an integer
program by creating a graph!!

Here is how to construct it, consider

L(b) := {x | Ax = b, x ≥ 0, x ∈ Zn}

.
Nodes are lattice points in L(b) and the Graver basis elements give directed
edges departing from each lattice point u ∈ L(b).
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GOOD NEWS: Test Sets and Augmentation Method

A TEST SET is a finite collection of integral vectors with the property that
every feasible non-optimal solution of an integer program can be improved by
adding a vector in the test set.

Theorem [J. Graver 1975] Graver bases for A can be used to solve the
augmentation problem Given A ∈ Zm×n, x ∈ Nn and c ∈ Zn, either find an
improving direction g ∈ Zn, namely one with x − g ∈ {y ∈ Nn : Ay = Ax}
and cg > 0, or assert that no such g exists.
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BAD NEWS!!

Graver bases contain a Gröbner bases, Hilbert bases. Work by Hosten,
Graver, Scarf, Sturmfels, Sullivant, Thomas, Weismantel et al. and many
others.

Graver test sets can be exponentially large even in fixed dimension! Very hard
to compute, you don’t want to do this too often.

People typically stored as a list of the whole test set and has to search within.

NP-complete problem to decide whether a list of vectors is a complete Graver
bases.

New Results: There are useful cases where Graver bases become very
manageable and efficient.

BUT WE NEED HIGHLY STRUCTURED MATRICES!!
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NP-complete problem to decide whether a list of vectors is a complete Graver
bases.

New Results: There are useful cases where Graver bases become very
manageable and efficient.

BUT WE NEED HIGHLY STRUCTURED MATRICES!!
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Special Assumption II : Highly structured Matrices

Fix any pair of integer matrices A and B with the same number of columns, of
dimensions r × q and s × q, respectively. The n-fold matrix of the ordered pair
A,B is the following (s + nr)× nq matrix,

[A,B](n) := (1n ⊗ B)⊕ (In ⊗ A) =


B B B · · · B
A 0 0 · · · 0
0 A 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · A

 .

N-fold systems DO appear in applications! Yes, Transportation problems with
fixed number of suppliers!
Theorem Fix any integer matrices A,B of sizes r × q and s × q, respectively.
Then there is a polynomial time algorithm that, given any n, an integer vectors b,
cost vector c , and a convex function f , solves the corresponding n-fold integer
programming problem.

max{f (cx) : [A,B](n)x = b, x ∈ Nnq} .
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Key Lemma Fix any pair of integer matrices A ∈ Zr×q and B ∈ Zs×q.
Then there is a polynomial time algorithm that, given n, computes the Graver
basis G ([A,B](n)) of the n-fold matrix [A,B](n). In particular, the cardinality
and the bit size of G ([A,B](n)) are bounded by a polynomial function of n.

Key Idea (from Algebraic Geometry) [Aoki-Takemura, Santos-Sturmfels,
Hosten-Sullivant] For every pair of integer matrices A ∈ Zr×q and B ∈ Zs×q,
there exists a constant g(A,B) such that for all n, the Graver basis of
[A,B](n) consists of vectors with at most g(A,B) the number nonzero
components.
The smallest constant g(A,B) possible is the Graver complexity of A,B.
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Proof by Example

Consider the matrices A = [1 1] and B = I2. The Graver complexity of the pair
A,B is g(A,B) = 2.

[A,B](2) =


1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1

 , G ([A,B](2)) = ±
(

1 −1 −1 1
)

.

By our theorem, the Graver basis of the 4-fold matrix

[A,B](4) =


1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

 ,

G ([A,B](4)) = ±


1 −1 −1 1 0 0 0 0
1 −1 0 0 −1 1 0 0
1 −1 0 0 0 0 −1 1
0 0 1 −1 −1 1 0 0
0 0 1 −1 0 0 −1 1
0 0 0 0 1 −1 −1 1

 .
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Conclusions and Future work

LINEAR Methods are not sufficient to solve all current integer optimization
models, even the simple linear ones!

There is demand to solve NON-LINEAR optimization problems, not just
model things linearly anymore.

In fact NON-LINEAR ideas can be applied in classical problems too! (ASK
ME about them!):

Hilbert’s Nullstellensatz Algorithm in Graph Optimization problems

Central Paths of Interior point methods as Algebraic Curves

Santos’ topological thinking for the Hirsch conjecture

Tools from Algebra, Number Theory, Functional Analysis, Probability, and
Convex Geometry are bound to play a stronger role in the foundations of new
algorithmic tools!

Not just the foundations need to be studied, new software is beginning to
appear that uses all these ideas: 4ti2, LattE.
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Merci

Thank you

Gracias
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