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with 127194 6= ±45335 mod N . Computing gcd(127194− 45335, 377753) =
751 yields a non-trivial factor of N . ♦

Running time. We have omitted many details in our discussion of the algo-
rithm above. It can be shown, however, that with appropriate optimizations

the quadratic sieve algorithm runs in time 2O(
√

n·log n ) to factor a number N of
length O(n). The important point is that this running time is sub-exponential
in the length of N .

8.2 Algorithms for Computing Discrete Logarithms

Let G be a group for which the group operation can be carried out efficiently.
By the results of Section B.2.3, this means that exponentiation in G can also
be done efficiently. An instance of the discrete logarithm problem takes the
following form (see Section 7.3.2): given g ∈ G and y ∈ 〈g〉, find x such that
gx = y.4 This answer is denoted by logg y, and is uniquely defined modulo the
order of g. We sometimes refer to g in an instance of the discrete logarithm
problem as the base.

Algorithms for attacking the discrete logarithm problem fall into two cate-
gories: those that work for arbitrary groups (such algorithms are sometimes
termed generic) and those that work for some specific group. For algorithms
of the former type, we can often just as well take the group to be 〈g〉 itself
(thus ignoring elements in G\〈g〉 when g is not a generator of G). When doing
so, we will let q denote the order of 〈g〉 and assume that q is known. Note
that brute-force search for the discrete logarithm can be done in time O(q),
and so we will only be interested in algorithms whose running time is better
than this.

We will discuss the following algorithms that work in arbitrary groups:

• The baby-step/giant-step method, due to Shanks, computes the discrete
logarithm in a group of order q in time O(

√
q · polylog(q)).

• The Pohlig-Hellman algorithm can be used when the factorization of
the group order q is known. When q has small factors, this technique
reduces the given discrete logarithm instance to multiple instances of
the discrete logarithm problem in groups of smaller order. Solutions to
each of the latter can be combined to give the desired solution to the
original problem.

4Recall that 〈g〉, the cyclic subgroup generated by g, is the subgroup {g0, g1, . . .} ⊆ G. If
〈g〉 = G then g is a generator of G and G is cyclic.
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We next look at computing discrete logarithms in some specific groups.
As an illustrative but simple example, we first look at the problem in the
(additive) group ZN and show that discrete logarithms can be computed in
polynomial time in this case. The point of this exercise is to demonstrate that

even though any cyclic group of order q is isomorphic to Zq (cf.
Example 7.58 in Chapter 7), and hence all cyclic groups of the
same order are, in some sense, “the same”, the hardness of the
discrete logarithm problem depends in a crucial way on the partic-
ular representation being used for the group.

Indeed, the algorithm for computing discrete logarithms in the additive group
ZN will rely on the fact that multiplication modulo N is also defined. Such
a statement makes no sense in some arbitrary group that is defined without
reference to modular arithmetic.

Turning to groups with more cryptographic significance, we briefly discuss
the computation of discrete logarithms in the cyclic group Z∗p for p prime. We
give a high-level overview of the index calculus method that solves the discrete
logarithm problem in such groups in sub-exponential time. The full details of
this approach are, unfortunately, beyond the scope of this book.

The baby-step/giant-step algorithm is known to be optimal (in terms of its
asymptotic running time) as far as generic algorithms go. (We remark, how-
ever, that more space-efficient generic algorithms with the same running time
are known.) The proven lower bound on the complexity of finding discrete
logarithms when the group is treated generically, however, says nothing about
the hardness of finding discrete logarithms in any particular group.

Currently, the best-known algorithm for computing discrete logarithms in
Z∗p (for p prime) is the general number field sieve.5 Heuristically, this algorithm

runs in time 2O(n1/3·(log n)2/3) on average to compute discrete logarithms in
Z∗p when p has length ‖p‖ = O(n). Importantly, essentially no non-generic
algorithms are currently known for computing discrete logarithms in certain
specially-constructed elliptic curve groups (cf. Section 7.3.4). This means that
for such groups, as long as the group order is prime (so as to preclude the
Pohlig-Hellman algorithm), only exponential-time algorithms for computing
discrete logarithms are known.

To get a sense for the practical importance of this latter remark, we can
compare the group sizes needed for each type of group in order to make the
discrete logarithm problem equally hard. (This will be a rough comparison
only, as a more careful comparison would, for starters, need to take into
account the constants implicit in the big-O notation of the running times given
above.) For a 512-bit prime p, the general number field sieve computes discrete

5It is no accident that the name of this algorithm and its running time are the same as
for that of the currently best-known algorithm for factoring: they share many of the same
underlying steps.
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logarithms in Z∗p in roughly 25121/3· 92/3 ≈ 28·4 = 232 steps. This matches the
time needed to compute discrete logarithms using the best generic algorithm
in an elliptic curve group of order q, where q is a 64-bit prime, since then√

q ≈ 264/2 = 232. We see that a significantly smaller elliptic curve group,
with concomitantly faster group operations, can be used without reducing the
difficulty of the discrete logarithm problem (at least with respect to the best
currently-known techniques). Roughly speaking, then, by using elliptic curve
groups in place of Z∗p we obtain cryptographic schemes that are more efficient
for the honest players, but that are equally hard for an adversary to break.

8.2.1 The Baby-Step/Giant-Step Algorithm

The baby-step/giant-step algorithm, due to Shanks, computes discrete log-
arithms in a group of order q in time O(

√
q · polylog(q)). The idea is simple.

Given as input g and y ∈ 〈g〉, we can imagine the elements of 〈g〉 laid out in
a circle as

1 = g0, g1, g2, . . . , gq−2, gq−1, gq = 1,

and we know that y must lie somewhere on this circle. Computing and writing
down all the points on this circle would take at least Ω(q) time. Instead, we

“mark off” the circle at intervals of size t
def
= b√q c; that is, we compute and

record the bq/tc+ 1 = O(
√

q ) elements

g0, gt, g2t, . . . , gbq/tc·t.

(These are the “giant steps”.) Note that the “gap” between any consecutive
“marks” on the circle is at most t. Furthermore, we know that y = gx lies in
one of these gaps. We are thus guaranteed that one of the t elements

y · g0 = gx, y · g1 = gx+1, . . . , y · gt = gx+t,

will be equal to one of the points we have marked off. (These are the “baby
steps”.) Say y · gi = gk·t. We can easily solve this to obtain y = gkt−i or
logg y = [kt− i mod q]. Psuedocode for this algorithm is given next.

The algorithm requires O(
√

q ) exponentiations and multiplications in G,
and each exponentiation can be done in time O(polylog(q)) using an efficient
exponentiation algorithm. (Actually, other than the first value g1 = gt, each
value gi can be computed using a single multiplication as gi = gi−1 · g1.)
Sorting the O(

√
q ) pairs (i, gi) can be done in time O(

√
q · log q), and we

can then use binary search to check whether yi is equal to some gk in time
O(log q). The overall algorithm thus runs in time O(

√
q · polylog(q)).

Example 8.6
We show an application of the algorithm in the cyclic group Z∗29 of order
q = 29− 1 = 28. Take g = 2 and y = 17. We set t = 5 and compute

20 = 1, 25 = 3, 210 = 9, 215 = 27, 220 = 23, 225 = 11.
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ALGORITHM 8.5
The baby-step/giant-step algorithm

Input: Elements g ∈ G and y ∈ 〈g〉; the order q of g
Output: logg y

t := b√q c
for i = 0 to bq/tc:

compute gi := gi·t

sort the pairs (i, gi) by their second component
for i = 0 to t:

compute yi := y · gi

if yi = gk for some k, return [kt − i mod q]

(We omit the “mod 29” since it is understood that operations are in the
group Z∗29.) Then compute

17·20 = 17, 17·21 = 5, 17·22 = 10, 17·23 = 20, 17·24 = 11, 17·25 = 22,

and notice that 225 = 11 = 17 · 24. We thus have log2 17 = 25− 4 = 21. ♦

8.2.2 The Pohlig-Hellman Algorithm

The Pohlig-Hellman algorithm can be used to speed up the computation
of discrete logarithms when any non-trivial factors of the group order q are
known. Recall that the order of an element g, which we denote here by ord(g),
is the smallest positive i for which gi = 1. We will need the following lemma:

LEMMA 8.7 Let ord(g) = q, and say p | q. Then ord(gp) = q/p.

PROOF Since (gp)q/p = gq = 1, the order of gp is certainly at most q/p.
Let i > 0 be such that (gp)i = 1. Then gpi = 1 and, since q is the order
of g, it must be the case that pi ≥ q or i ≥ q/p. The order of gp is therefore
exactly q/p.

We will also use a generalization of the Chinese remainder theorem: if
q =

∏k
i=1 qi and the {qi} are pairwise relatively prime (i.e., gcd(qi, qj) = 1 for

all i 6= j), then

Zq ' Zq1 × · · · × Zqk
and Z

∗
q ' Z

∗
q1
× · · · × Z

∗
qk

.

(This can be proved by induction on k, using the basic Chinese remainder
theorem as the base case.) Moreover, by an extension of the algorithm in
Section 7.1.5 it is possible to convert efficiently between the representation
of an element as an element of Zq and its representation as an element of
Zq1 × · · · × Zqk

.
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We now describe the Pohlig-Hellman approach. We are given g and y and
are interested in finding an x such that gx = y. Let ord(g) = q, and say a
factorization

q =
k∏

i=1

qi

is known with the {qi} pairwise relatively prime. (Note that this need not be
the complete prime factorization of q.) We know that

(
gq/qi

)x

= (gx)
q/qi = yq/qi for i = 1, . . . , k. (8.4)

Letting gi
def
= gq/qi , we thus have k instances of a discrete logarithm problem

in k smaller groups, each of size ord(gi) = qi (by Lemma 8.7).
We can solve each of the k resulting instances using any other algorithm for

solving the discrete logarithm problem; for concreteness, let us assume that
the baby-step/giant-step algorithm of the previous section is used. Solving
these instances gives a set of answers {xi}ki=1 for which gxi

i = yq/qi = gx
i .

(The second equality follows from Equation (8.4).) Proposition 7.50 implies
that x = xi mod qi for all i. By the generalized Chinese remainder theorem
discussed earlier, the constraints

x = x1 mod q1

...

x = xk mod qk

uniquely determine x modulo q. (This is of course the best we can hope for,
since the equation gx = y only uniquely determines x modulo q.) The answer
x itself can be efficiently reconstructed from x1, . . . , xk .

Example 8.8
We again apply the ideas introduced here to compute a discrete logarithm in
Z∗p. Here, take p = 31 with the order of Z∗31 being q = 31− 1 = 30 = 5 · 3 · 2.
Say g = 3 and y = 26 = gx. We have

(gx)30/5 = y30/5 ⇒ (36)x = 16x = 266 = 1

(gx)30/3 = y30/3 ⇒ (310)x = 25x = 2610 = 5

(gx)30/2 = y30/2 ⇒ (315)x = 30x = 2615 = 30.

(Once again, we omit the “mod 31” since this is understood.) Solving each
equation, we obtain

x = 0 mod 5, x = 2 mod 3, x = 1 mod 2,

and so x = 5 mod 30. Indeed, 35 = 26 mod 31. ♦
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Assuming q with factorization as above, and assuming the baby-step/giant-
step algorithm is used to solve each of the smaller instances of the dis-
crete logarithm problem, the running time of the entire algorithm will be
O(polylog(q) ·∑k

i=1

√
qi ). Since q can have at most log q factors, this simpli-

fies to O(polylog(q) ·maxi{√qi}). Depending on the size of the largest known
factor of q, this can be a marked improvement over the O(

√
q ) algorithm

given in the previous section. In particular, if q has many small factors then
the discrete logarithm problem in a group of order q will be relatively easy to
solve via this approach. As discussed in Section 7.3.2, this motivates choosing
q to be prime for cryptographic applications.

If q has prime factorization q =
∏k

i=1 pei

i , the Pohlig-Hellman algorithm as
described above solves the discrete logarithm in a group of order q in time

O
(
polylog(q) ·maxi{

√
pei

i }
)
. Using additional ideas, this can be improved

to O
(
polylog(q) ·maxi{√pi}

)
; see Exercise 8.2.

8.2.3 The Discrete Logarithm Problem in ZN

The algorithms shown in the preceding two sections are generic, in the sense
that they are oblivious to the underlying group in which the discrete logarithm
problem is defined (except for knowledge of the group order). The purpose of
this brief section is merely to emphasize that non-generic algorithms, which
make use of the particular (representation of the) group under consideration,
can potentially perform much better.

Consider the task of computing discrete logarithms in the (additive) group
ZN for arbitrary N . The problem is trivial with respect to the base g = 1:
the discrete logarithm of element y ∈ ZN is simply the integer y itself since
y · 1 = y mod N . Note that, formally speaking, the ‘y’ on the left-hand side
of this equation denotes the integer y while the ‘y’ on the right-hand side
denotes the element y ∈ ZN . Nevertheless, the particular nature of the group
ZN allows us to essentially view these two instances of ‘y’ interchangeably.

Things are only mildly more complicated if a generator g 6= 1 is used.
(Exercise 8.3 deals with the case when g is not a generator of ZN .) Let g ∈ ZN

be a generator and say we want to compute x such that x · g = y mod N for
some given value y. Using Theorem B.18 (along with the fact that 1 is a
generator), we have gcd(g, N) = 1. But then g has a multiplicative inverse
g−1 modulo N (and this inverse can be computed efficiently as discussed in
Appendix B.2.2). The desired solution is simply x = y · g−1 mod N .

It is interesting to pinpoint once again exactly what non-generic properties
of ZN are being used here. In this case, the algorithm implicitly uses the fact
that an operation (namely, multiplication modulo N) other than the group
operation (i.e., addition modulo N) is defined on the elements of the group.
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8.2.4 The Index Calculus Method

The index calculus method solves the discrete logarithm problem in the
cyclic group Z∗p (for p prime) in time that is sub-exponential in the length
of p. The astute reader may notice that the algorithm as we will describe it
bears some resemblance to the quadratic sieve factoring algorithm introduced
in Section 8.1.3. As in the case of that algorithm, we will discuss the main
ideas used by the index calculus method but leave the details beyond the scope
of our treatment. Also, some small changes are made in order to simplify the
presentation.

The index calculus method uses a two-stage process. Importantly, the first
stage requires knowledge only of the modulus p and the base g and so it can
be run as a ‘pre-processing step’ before y is known. For the same reason, it
suffices to run the first stage only once in order to solve multiple instances of
the discrete logarithm problem (as long as all these instances share the same
p and g).

Step 1. Let q = p − 1, the order of Z∗p. Fix a set B = {p1, . . . , pk} of
small prime numbers. In this stage, we find ` ≥ k distinct, non-zero values

x1, . . . , x` ∈ Zq for which gi
def
= gxi mod p is “small”, so that gi can be factored

over the integers (using, e.g., trial division) and such that all the prime factors
of gi lie in B. We do not discuss how these {xi} are found.

Following this step, we have ` equations of the form:

gx1 =

k∏

i=1

p
e1,i

i mod p

...

gx` =

k∏

i=1

p
e`,i

i mod p.

Taking discrete logarithms, we can transform these into linear equations:

x1 =
k∑

i=1

e1,i · logg pi mod (p− 1)

... (8.5)

x` =

k∑

i=1

e`,i · logg pi mod (p− 1).

Note that the {xi} and the {ei,j} are known, while the {logg pi} are unknown.

Step 2. Now we are given an element y and want to compute logg y. Here,

we find a value x∗ ∈ Zq for which g∗
def
= gx∗ · y mod p is “small”, so that g∗
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can be factored over the integers and such that all the prime factors of g∗ lie
in B. We do not discuss how x∗ is found.

Say

gx∗ · y =
k∏

i=1

p
e∗

i
i mod p

⇒ x∗ + logg y =

k∑

i=1

e∗i · logg pi mod (p− 1),

where x∗ and the {e∗i } are known. Combined with Equation (8.5), we have
` + 1 ≥ k + 1 linear equations in the k + 1 unknowns {logg pi}ki=1 and logg y.
Using linear algebraic6 methods (and assuming the system of equations is not
under-defined), we can solve for each of the unknowns and in particular solve
for the desired solution logg y.

Example 8.9

Let p = 101, g = 3, and y = 87. We have 310 = 65 mod 101, and 65 = 5 · 13
(over the integers). Similarly, 312 = 80 = 24·5 mod 101 and 314 = 13 mod 101.
That is,

10 = log3 5 + log3 13 mod 100

12 = 4 · log3 2 + log3 5 mod 100

14 = log3 13 mod 100.

We also have 35 · 87 = 32 = 25 mod 101, or

5 + log3 87 = 5 · log3 2 mod 100. (8.6)

Using simple algebraic manipulation, we first derive 4 · log3 2 = 16 mod 100.
This doesn’t determine log3 2 uniquely, but it does tell us that log3 2 =
4, 29, 54, or 79 (cf. Exercise 8.3). Trying all possibilities shows that log3 2 = 29.
Plugging this into Equation (8.6) gives log3 87 = 40. ♦

Running time. It can be shown that with appropriate optimizations the

index calculus algorithm runs in time 2O(
√

n·log n ) to compute discrete log-
arithms in Z∗p for p a prime of length n. The important point is that this
is sub-exponential in ‖p‖. Note that the expression for the running time is
identical to that for the quadratic sieve method.

6Technically, things are slightly more complicated since the linear equations are all modulo
p− 1, which is not prime. Nevertheless, there exist techniques for dealing with this.
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Exercises

8.1 Here we show how to solve the discrete logarithm problem in a cyclic
group of order q = pe in time O(polylog(q) · √p ). We are given as input
a generator g of known order pe and a value y, and want to compute
x = logg y. Note that p can be computed easily from q (see Exercise 7.9
in Chapter 7).

(a) Show how to find x mod p in time O(polylog(q) · √p ).
Hint: Solve the equation

(
gpe−1

)x0
= ype−1

and use the same ideas as in the Pohlig-Hellman algorithm.

(b) Say x = x0+x1 ·p+· · ·+xe−1 ·pe−1 with 0 ≤ xi < p. In the previous
step we determined x0. Show how to compute in polylog(q) time a

value y1 such that (gp)x1+x2·p+···+xe−1·pe−2

= y1.

(c) Use recursion to obtain the claimed running time for the original
problem. (Note that e = polylog(q).)

8.2 Let q have prime factorization q =
∏k

i=1 pei

i . Using the result from the
previous problem, show a modification of the Pohlig-Hellman algorithm
that solves the discrete logarithm problem in a group of order q in time

O
(
polylog(q) ·∑k

i=1 ei
√

pi

)
= O

(
polylog(q) ·max{√pi }

)
.

8.3 (a) Show that if ab = c mod N and gcd(b, N) = d, then:

i. d | c;
ii. a · (b/d) = (c/d) mod (N/d); and

iii. gcd(b/d, N/d) = 1.

(b) Describe how to use the above to compute discrete logarithms in
ZN efficiently even when the base g is not a generator of ZN .


