MA 721 – Midterm II Spring 2020

1. (10 points) Here is a matrix in rational canonical form:

- (a) What are its invariant factors?
- (b) What is its Jordan canonical form?
- (c) What is its minimal polynomial?
- (d) What is its characteristic polynomial?

Solution:

2. (10 points) Consider the \mathbb{Q} -vectorspace

$$V = \mathbb{Q}[x]/\langle (x-\lambda)^{d_1} \rangle \oplus \mathbb{Q}[x]/\langle (x-\lambda)^{d_2} \rangle \oplus \ldots \oplus \mathbb{Q}[x]/\langle (x-\lambda)^{d_k} \rangle$$

where $0 < d_1 \leq d_2 \leq \ldots \leq d_k$ and $\lambda \in \mathbb{Q}$. Let $T: V \to V$ be the linear transformation given by multiplication by x. For each of the following, do not justify your answers:

- (a) What is the minimal polynomial of T?
- (b) What is the characteristic polynomial of T?
- (c) What is the dimension of the kernel of $T \lambda \cdot id$? (Here id denotes the identity map $V \to V$.)
- (d) Suppose $p(x) \in \mathbb{Q}[x]$ and $p(\lambda) \neq 0$. Let $L : V \to V$ be the linear map given by multiplication by p(x). What is the dimension of the kernel of L?

Solution:

- (a) minimal polynomial of $T = (x \lambda)^{d_k}$
- (b) characteristic polynomial of $T = (x \lambda)^n$ where $n = \sum_{i=1}^k d_i$

(c)
$$\dim(\ker(T - \lambda \cdot \mathrm{id})) = k$$

(d)
$$\dim(\ker(L)) = 0$$

- 3. (15 points) For each pair of principal ideal domain R and R-module M, give the rank, invariant factors, and elementary divisors of M. Do not justify your answers.
 - (a) $R = \mathbb{Z}, M = \mathbb{Z}/10\mathbb{Z} \oplus \mathbb{Z}/15\mathbb{Z} \oplus \mathbb{Z}/35\mathbb{Z}$
 - (b) $R = \mathbb{Z}, M = \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} \oplus \mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z})$
 - (c) $R = \mathbb{Z}, M = \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/4\mathbb{Z}$
 - (d) $R = \mathbb{Z}/5\mathbb{Z}, M = \mathbb{Z}/5\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z}$
 - (e) $R = \mathbb{Z}, M = \mathbb{Z}^2/N$ where $N \subseteq \mathbb{Z}^2$ is the submodule generated by $\{(2,1), (1,-1)\}$

Solut	Solution:				
		rank	invariant factors	elementary divisors	
	(a)	0	5, 5, $2 \cdot 3 \cdot 5 \cdot 7 = 210$	2, 3, 5, 5, 5, 7	
	(b)	2	3, 3	3, 3	
	(c)	0	2	2	
	(d)	2	Ø	Ø	
	(e)	0	3	3	

4. (10 points) Here is a primary decomposition of an ideal in $\mathbb{Q}[x, y, z]$:

$$I = \langle x^2 z, xy^2, xyz, xz^2 \rangle = \langle x \rangle \cap \langle y^2, z \rangle \cap \langle x, y, z \rangle^3.$$

- (a) List the associated primes of I and label each as isolated or embedded.
- (b) For each associated prime P, give an element $f \in R$ for which $P = \operatorname{rad}(I : \langle f \rangle)$.

Solution:

(a) We see that the decomposition above is minimal:

$$xz \in (\langle x \rangle \cap \langle y^2, z \rangle) \backslash \langle x, y, z \rangle^3$$
$$x^3 \in (\langle x \rangle \cap \langle x, y, z \rangle^3) \backslash \langle y^2, z \rangle$$
$$y^2z \in (\langle y^2, z \rangle \cap \langle x, y, z \rangle^3) \backslash \langle x \rangle$$

Moreover the prime ideals

$$\operatorname{rad}(\langle x \rangle) = \langle x \rangle, \quad \operatorname{rad}(\langle y^2, z \rangle) = \langle y, z \rangle, \quad \operatorname{rad}(\langle x, y, z \rangle^3) = \langle x, y, z \rangle$$

are distinct. Note that $\langle x \rangle \subset \langle x, y, z \rangle$, but $\langle x \rangle$ and $\langle y, z \rangle$ do not contain either of the other ideals. Therefore we have

Embedded primes: $\langle x, y, z \rangle$ Isolated primes: $\langle x \rangle$, $\langle y, z \rangle$

(b) For $P = \langle x \rangle$, consider $f = y^2 z$. Since $y^2 z \in \langle y^2, z \rangle \cap \langle x, y, z \rangle^3$, but $y^2 z \notin \langle x \rangle$, rad $(I : \langle y^2 z \rangle) = \langle x \rangle$. Since $x^3 \in \langle x \rangle \cap \langle x, y, z \rangle^3$, but $x^3 \notin \langle y^2, z \rangle$, rad $(I : \langle x^3 \rangle) = \langle y^2, z \rangle$. Since $xz \in \langle x \rangle \cap \langle y^2, z \rangle$, but $xz \notin \langle x, y, z \rangle^3$, rad $(I : \langle xz \rangle) = \langle x, y, z \rangle$ In summary, rad $(I : \langle y^2 z \rangle) = \langle x \rangle$, rad $(I : \langle x^3 \rangle) = \langle y, z \rangle$, and rad $(I : \langle xz \rangle) = \langle x, y, z \rangle$

- 5. (10 points) Let R be a Noetherian ring and $Q \subseteq R$ an ideal.
 - (a) Using the definition, show that Q is primary if and only if every zero-divisor of R/Q is nilpotent. (Recall that an element r is nilpotent if $r^k = 0$ for some k.)
 - (b) For $R = \mathbb{Q}[x, y]$ and $Q = \langle x^2, xy \rangle$ give an example of a zero-divisor in R/Q that is *not* nilpotent.

Solution:

(a) (\Rightarrow) Suppose that Q is primary and let r + Q be a zero divisor in R/Q. Then r + Q is nonzero and there exists a nonzero element $s + Q \in R/Q$ so that $(r+Q) \cdot (s+Q) = 0 + Q$. Then $rs \in Q$ and since s+Q is nonzero, $s \notin Q$. Since Q is primary, this implies that $r^k \in Q$ for some k. Then $(r+Q)^k = r^k + Q = 0 + Q$, meaning that r + Q is a zero divisor in R/Q.

(\Leftarrow) Suppose that every zero-divisor of R/Q is nilpotent. Suppose that for some $r, s \in R, rs \in Q$ and $s \notin Q$. Then (r+Q)(s+Q) = rs + Q = 0 + Q.

If $r \in Q$, then some power of r belongs to Q.

If $r \notin Q$, then r+Q and s+Q are non-zero in R/Q and therefore zero-divisors. By assumption, r+Q is nilpotent, meaning that $(r+Q)^k = r^k + Q = 0 + Q$ for some k. It follows that $r^k \in Q$.

Since $rs \in Q$ and $s \notin Q$ implies $r^k \in Q$ for some k, Q is primary.

(b) Consider y + Q in R/Q.

To see that this is a zero-divisor in R/Q, note that $x \notin Q$ and $y \notin Q$, so x + Q and y+Q are nonzero in R/Q. Moreover $xy \in Q$, so (x+Q)(y+Q) = xy+Q = 0 + Q, meaning that y + Q is a zero-divisor.

It is not nilpotent because $(y+Q)^k = y^k + Q$. Note that every element of Q has the form $x^2 \cdot f + xy \cdot g$, which is divisible by x. In particular, $y^k \notin Q$ for any k. Therefore $(y+Q)^k \neq 0$ for any k.

- 6. (15 points) For each, answer True or False. Do not justify your answer.
 - (a) A linear transformation $T: V \to V$ on a finite dimensional vectorspace V over an algebraically closed field is a direct sum of its generalized eigenspaces.
 - (b) If two matrices have the same minimal and characteristic polynomials, then they are similar.
 - (c) If R is a Noetherian ring and $I \subseteq R$ is an ideal, then R/I is also Noetherian.
 - (d) If I is an ideal of a principal ideal domain R, then I has no embedded primes.
 - (e) The intersection of prime ideals is prime.

Solution:

- (a) True.
- (b) False.
- (c) True.
- (d) True.
- (e) False.