MA 721 - Midterm II
 Spring 2020

1. (10 points) Here is a matrix in rational canonical form:

$$
A=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

(a) What are its invariant factors?
(b) What is its Jordan canonical form?
(c) What is its minimal polynomial?
(d) What is its characteristic polynomial?

Solution:

(a) $a_{1}=x^{3}-x^{2}, a_{2}=x^{4}-2 x^{3}+x^{2}$
(b) Jordan canonical form: $\left(\begin{array}{lllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$.
(c) minimal polynomial $=x^{2}(x-1)^{2}=x^{4}-2 x^{3}+x^{2}$
(d) characteristic polynomial $=x^{4}(x-1)^{3}=x^{7}-3 x^{6}+3 x^{5}-x^{4}$
2. (10 points) Consider the \mathbb{Q}-vectorspace

$$
V=\mathbb{Q}[x] /\left\langle(x-\lambda)^{d_{1}}\right\rangle \oplus \mathbb{Q}[x] /\left\langle(x-\lambda)^{d_{2}}\right\rangle \oplus \ldots \oplus \mathbb{Q}[x] /\left\langle(x-\lambda)^{d_{k}}\right\rangle
$$

where $0<d_{1} \leq d_{2} \leq \ldots \leq d_{k}$ and $\lambda \in \mathbb{Q}$. Let $T: V \rightarrow V$ be the linear transformation given by multiplication by x. For each of the following, do not justify your answers:
(a) What is the minimal polynomial of T ?
(b) What is the characteristic polynomial of T ?
(c) What is the dimension of the kernel of $T-\lambda \cdot \mathrm{id}$?
(Here id denotes the identity map $V \rightarrow V$.)
(d) Suppose $p(x) \in \mathbb{Q}[x]$ and $p(\lambda) \neq 0$. Let $L: V \rightarrow V$ be the linear map given by multiplication by $p(x)$. What is the dimension of the kernel of L ?

Solution:

(a) minimal polynomial of $T=(x-\lambda)^{d_{k}}$
(b) characteristic polynomial of $T=(x-\lambda)^{n}$ where $n=\sum_{i=1}^{k} d_{i}$
(c) $\operatorname{dim}(\operatorname{ker}(T-\lambda \cdot \mathrm{id}))=k$
(d) $\operatorname{dim}(\operatorname{ker}(L))=0$
3. (15 points) For each pair of principal ideal domain R and R-module M, give the rank, invariant factors, and elementary divisors of M. Do not justify your answers.
(a) $R=\mathbb{Z}, M=\mathbb{Z} / 10 \mathbb{Z} \oplus \mathbb{Z} / 15 \mathbb{Z} \oplus \mathbb{Z} / 35 \mathbb{Z}$
(b) $R=\mathbb{Z}, M=\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} \oplus \mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z})$
(c) $R=\mathbb{Z}, M=\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 4 \mathbb{Z}$
(d) $R=\mathbb{Z} / 5 \mathbb{Z}, M=\mathbb{Z} / 5 \mathbb{Z} \oplus \mathbb{Z} / 5 \mathbb{Z}$
(e) $R=\mathbb{Z}, M=\mathbb{Z}^{2} / N$ where $N \subseteq \mathbb{Z}^{2}$ is the submodule generated by $\{(2,1),(1,-1)\}$

Solution:

	rank	invariant factors	elementary divisors
(a)	0	$5,5,2 \cdot 3 \cdot 5 \cdot 7=210$	$2,3,5,5,5,7$
(b)	2	3,3	3,3
(c)	0	2	2
(d)	2	\emptyset	\emptyset
(e)	0	3	3

4. (10 points) Here is a primary decomposition of an ideal in $\mathbb{Q}[x, y, z]$:

$$
I=\left\langle x^{2} z, x y^{2}, x y z, x z^{2}\right\rangle=\langle x\rangle \cap\left\langle y^{2}, z\right\rangle \cap\langle x, y, z\rangle^{3} .
$$

(a) List the associated primes of I and label each as isolated or embedded.
(b) For each associated prime P, give an element $f \in R$ for which $P=\operatorname{rad}(I:\langle f\rangle)$.

Solution:

(a) We see that that the decomposition above is minimal:

$$
\begin{aligned}
x z & \in\left(\langle x\rangle \cap\left\langle y^{2}, z\right\rangle\right) \backslash\langle x, y, z\rangle^{3} \\
x^{3} & \in\left(\langle x\rangle \cap\langle x, y, z\rangle^{3}\right) \backslash\left\langle y^{2}, z\right\rangle \\
y^{2} z & \in\left(\left\langle y^{2}, z\right\rangle \cap\langle x, y, z\rangle^{3}\right) \backslash\langle x\rangle
\end{aligned}
$$

Moreover the prime ideals

$$
\operatorname{rad}(\langle x\rangle)=\langle x\rangle, \quad \operatorname{rad}\left(\left\langle y^{2}, z\right\rangle\right)=\langle y, z\rangle, \quad \operatorname{rad}\left(\langle x, y, z\rangle^{3}\right)=\langle x, y, z\rangle
$$

are distinct. Note that $\langle x\rangle \subset\langle x, y, z\rangle$, but $\langle x\rangle$ and $\langle y, z\rangle$ do not contain either of the other ideals. Therefore we have

Embedded primes: $\langle x, y, z\rangle$
Isolated primes: $\langle x\rangle,\langle y, z\rangle$
(b) For $P=\langle x\rangle$, consider $f=y^{2} z$. Since $y^{2} z \in\left\langle y^{2}, z\right\rangle \cap\langle x, y, z\rangle^{3}$, but $y^{2} z \notin\langle x\rangle$, $\operatorname{rad}\left(I:\left\langle y^{2} z\right\rangle\right)=\langle x\rangle$.
Since $x^{3} \in\langle x\rangle \cap\langle x, y, z\rangle^{3}$, but $x^{3} \notin\left\langle y^{2}, z\right\rangle, \operatorname{rad}\left(I:\left\langle x^{3}\right\rangle\right)=\left\langle y^{2}, z\right\rangle$.
Since $x z \in\langle x\rangle \cap\left\langle y^{2}, z\right\rangle$, but $x z \notin\langle x, y, z\rangle^{3}, \operatorname{rad}(I:\langle x z\rangle)=\langle x, y, z\rangle$
In summary,

$$
\operatorname{rad}\left(I:\left\langle y^{2} z\right\rangle\right)=\langle x\rangle, \quad \operatorname{rad}\left(I:\left\langle x^{3}\right\rangle\right)=\langle y, z\rangle, \quad \text { and } \quad \operatorname{rad}(I:\langle x z\rangle)=\langle x, y, z\rangle
$$

5. (10 points) Let R be a Noetherian ring and $Q \subseteq R$ an ideal.
(a) Using the definition, show that Q is primary if and only if every zero-divisor of R / Q is nilpotent. (Recall that an element r is nilpotent if $r^{k}=0$ for some k.)
(b) For $R=\mathbb{Q}[x, y]$ and $Q=\left\langle x^{2}, x y\right\rangle$ give an example of a zero-divisor in R / Q that is not nilpotent.

Solution:

(a) (\Rightarrow) Suppose that Q is primary and let $r+Q$ be a zero divisor in R / Q. Then $r+Q$ is nonzero and there exists a nonzero element $s+Q \in R / Q$ so that $(r+Q) \cdot(s+Q)=0+Q$. Then $r s \in Q$ and since $s+Q$ is nonzero, $s \notin Q$. Since Q is primary, this implies that $r^{k} \in Q$ for some k. Then $(r+Q)^{k}=r^{k}+Q=0+Q$, meaning that $r+Q$ is a zero divisor in R / Q.
(\Leftarrow) Suppose that every zero-divisor of R / Q is nilpotent. Suppose that for some $r, s \in R$, $r s \in Q$ and $s \notin Q$. Then $(r+Q)(s+Q)=r s+Q=0+Q$.
If $r \in Q$, then some power of r belongs to Q.
If $r \notin Q$, then $r+Q$ and $s+Q$ are non-zero in R / Q and therefore zero-divisors. By assumption, $r+Q$ is nilpotent, meaning that $(r+Q)^{k}=r^{k}+Q=0+Q$ for some k. It follows that $r^{k} \in Q$.
Since $r s \in Q$ and $s \notin Q$ implies $r^{k} \in Q$ for some k, Q is primary.
(b) Consider $y+Q$ in R / Q.

To see that this is a zero-divisor in R / Q, note that $x \notin Q$ and $y \notin Q$, so $x+Q$ and $y+Q$ are nonzero in R / Q. Moreover $x y \in Q$, so $(x+Q)(y+Q)=x y+Q=$ $0+Q$, meaning that $y+Q$ is a zero-divisor.
It is not nilpotent because $(y+Q)^{k}=y^{k}+Q$. Note that every element of Q has the form $x^{2} \cdot f+x y \cdot g$, which is divisible by x. In particular, $y^{k} \notin Q$ for any k. Therefore $(y+Q)^{k} \neq 0$ for any k.
6. (15 points) For each, answer True or False. Do not justify your answer.
(a) A linear transformation $T: V \rightarrow V$ on a finite dimensional vectorspace V over an algebraically closed field is a direct sum of its generalized eigenspaces.
(b) If two matrices have the same minimal and characteristic polynomials, then they are similar.
(c) If R is a Noetherian ring and $I \subseteq R$ is an ideal, then R / I is also Noetherian.
(d) If I is an ideal of a principal ideal domain R, then I has no embedded primes.
(e) The intersection of prime ideals is prime.

Solution:

(a) True.
(b) False.
(c) True.
(d) True.
(e) False.

