MA 721 – Midterm II Spring 2020

Time: 90 mins.

- 1. Write out solutions to all questions on your own paper and send me an electronic copy by email or on Moodle by midnight, March 24, 2020.
- 2. You do not need to rewrite the problem statements, but make sure that all problems are clearly labeled and in order.
- 3. Unless stated otherwise, justify your answers to receive full credit. Your answers do not have to be in complete sentences, but they do need to be understandable.
- 4. No outside assistance (from notes, books, internet, people, etc.) is allowed.
- 5. You will have 90 minutes to write up solutions, starting when you look at any page after this one. (This does not include scanning/sending time.)
- 6. Please write out the following on the top of your exam solutions and sign your name after it:

I affirm that I have not used any outside resources while taking this exam and that I have completed the exam in a continuous 90-minute time period.

Question	Points	Score
1	10	
2	10	
3	15	
4	10	
5	10	
6	15	
Total:	70	

- MA 721
- 1. (10 points) Here is a matrix in rational canonical form:

- (a) What are its invariant factors?
- (b) What is its Jordan canonical form?
- (c) What is its minimal polynomial?
- (d) What is its characteristic polynomial?
- 2. (10 points) Consider the \mathbb{Q} -vectorspace

$$V = \mathbb{Q}[x]/\langle (x-\lambda)^{d_1} \rangle \oplus \mathbb{Q}[x]/\langle (x-\lambda)^{d_2} \rangle \oplus \ldots \oplus \mathbb{Q}[x]/\langle (x-\lambda)^{d_k} \rangle$$

where $0 < d_1 \leq d_2 \leq \ldots \leq d_k$ and $\lambda \in \mathbb{Q}$. Let $T: V \to V$ be the linear transformation given by multiplication by x. For each of the following, do not justify your answers:

- (a) What is the minimal polynomial of T?
- (b) What is the characteristic polynomial of T?
- (c) What is the dimension of the kernel of $T \lambda \cdot id$? (Here id denotes the identity map $V \to V$.)
- (d) Suppose $p(x) \in \mathbb{Q}[x]$ and $p(\lambda) \neq 0$. Let $L : V \to V$ be the linear map given by multiplication by p(x). What is the dimension of the kernel of L?
- 3. (15 points) For each pair of principal ideal domain R and R-module M, give the rank, invariant factors, and elementary divisors of M. Do not justify your answers.
 - (a) $R = \mathbb{Z}, M = \mathbb{Z}/10\mathbb{Z} \oplus \mathbb{Z}/15\mathbb{Z} \oplus \mathbb{Z}/35\mathbb{Z}$
 - (b) $R = \mathbb{Z}, M = \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} \oplus \mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z})$
 - (c) $R = \mathbb{Z}, M = \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/4\mathbb{Z}$
 - (d) $R = \mathbb{Z}/5\mathbb{Z}, M = \mathbb{Z}/5\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z}$
 - (e) $R = \mathbb{Z}, M = \mathbb{Z}^2/N$ where $N \subseteq \mathbb{Z}^2$ is the submodule generated by $\{(2,1), (1,-1)\}$

4. (10 points) Here is a primary decomposition of an ideal in $\mathbb{Q}[x, y, z]$:

$$I = \langle x^2 z, xy^2, xyz, xz^2 \rangle = \langle x \rangle \cap \langle y^2, z \rangle \cap \langle x, y, z \rangle^3.$$

- (a) List the associated primes of I and label each as isolated or embedded.
- (b) For each associated prime P, give an element $f \in R$ for which $P = \operatorname{rad}(I : \langle f \rangle)$.

- 5. (10 points) Let R be a Noetherian ring and $Q \subseteq R$ an ideal.
 - (a) Using the definition, show that Q is primary if and only if every zero-divisor of R/Q is nilpotent. (Recall that an element r is nilpotent if $r^k = 0$ for some k.)
 - (b) For $R = \mathbb{Q}[x, y]$ and $Q = \langle x^2, xy \rangle$ give an example of a zero-divisor in R/Q that is *not* nilpotent.

- 6. (15 points) For each, answer **True** or **False**. Do not justify your answer.
 - (a) A linear transformation $T: V \to V$ on a finite dimensional vectorspace V over an algebraically closed field is a direct sum of its generalized eigenspaces.
 - (b) If two matrices have the same minimal and characteristic polynomials, then they are similar.
 - (c) If R is a Noetherian ring and $I \subseteq R$ is an ideal, then R/I is also Noetherian.
 - (d) If I is an ideal of a principal ideal domain R, then I has no embedded primes.
 - (e) The intersection of prime ideals is prime.