MA 721 – Midterm I Spring 2020 Solutions

Name: ____

Question	Points	Score
1	15	
2	10	
3	10	
4	10	
5	10	
6	15	
Total:	70	

 (a) (5 points) For each of the following, give a simpler description the module up to isomorphism (e.g. Z/3Z ⊕ Z/5Z ≅ Z/15Z). Do not justify your answers.

 $\mathbb{Z}/3\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/3\mathbb{Z} \cong \mathbb{Z}/3\mathbb{Z}$ $\mathbb{Z}/3\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/5\mathbb{Z} \cong \{0\}$ $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}^2 \cong \mathbb{Q}^2$ $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/3\mathbb{Z},\mathbb{Z}) \cong \{0\}$ $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}^2, \mathbb{Z}/3\mathbb{Z}) \cong (\mathbb{Z}/3\mathbb{Z})^2$

(b) (10 points) Suppose that V and W are vectorspaces over a field F of dimensions n and m, respectively. For each of the following F-vectorspaces give the dimension and a basis, assuming that $\{v_1, \ldots, v_n\}$ is a basis for V and $\{w_1, \ldots, w_m\}$ is a basis for W. Do not justify your answers.

Module	Dimension	Basis
$V\oplus W$	m+n	$\{(v_i, 0), (0, w_j) : i = 1, \dots, n, j = 1, \dots, m\}$
$V \otimes_F W$	$m \cdot n$	$\{v_i \otimes w_j : i = 1, \dots, n, j = 1, \dots, m\}$
$\operatorname{Hom}_F(V,W)$	$m \cdot n$	$\{\varphi_{ij} : i = 1, \dots, n, j = 1, \dots, m\}$ where $\varphi_{ij}(v_i) = w_j$ and $\varphi_{ij}(v_k) = 0$ for $k \neq i$
$\mathcal{S}^{3}(V)$	$\binom{n+2}{3}$	$\{v_{i_1} \otimes v_{i_2} \otimes v_{i_3} + \mathcal{C}^3(V) : 1 \le i_1 \le i_2 \le i_3 \le n\}$
$\bigwedge(V)$	2^n	$\{v_{i_1} \wedge \dots \wedge v_{i_k} : 0 \le k \le n, \ 1 \le i_1 < \dots < i_k \le n\}$

- 2. Let A, B, and C be R-modules.
 - (a) (5 points) Give an explicit isomorphism

 $\Phi: (A \oplus B) \otimes_R C \to (A \otimes_R C) \oplus (B \otimes_R C)$

by giving values of Φ and its inverse on simple tensors. Do not justify your answers.

Solution: $\Phi((a,b) \otimes c)) = (a \otimes c, b \otimes c)$ $\Phi^{-1}(a \otimes c_1, b \otimes c_2) = (a,0) \otimes c_1 + (0,b) \otimes c_2$

(b) (5 points) Similarly, describe an explicit isomorphism

 $\operatorname{Hom}_R(A \oplus B, C) \to \operatorname{Hom}_R(A, C) \oplus \operatorname{Hom}_R(B, C)$

and its inverse. Do not justify your answers.

Solution: Define Φ : Hom_R $(A \oplus B, C) \to$ Hom_R $(A, C) \oplus$ Hom_R(B, C) as follows. For a homomorphism $\varphi \in$ Hom_R $(A \oplus B, C)$, define

 $\Phi(\varphi) = (\psi_1, \psi_2)$ where $\psi_1(a) = \varphi(a, 0)$ and $\psi_2(b) = \varphi(0, b)$

For $(\psi_1, \psi_2) \in \operatorname{Hom}_R(A, C) \oplus \operatorname{Hom}_R(B, C)$,

 $\Phi^{-1}(\psi_1, \psi_2) = \varphi$ where $\varphi(a, b) = \psi_1(a) + \psi_2(b)$.

3. (10 points) Given an R-module M, the set of torsion elements of M is defined to be

$$Tor(M) = \{m \in M : rm = 0 \text{ for some } r \in R \setminus \{0\}\}\$$

Show that if R is an integral domain, then Tor(M) is a submodule of M.

Solution: To check that Tor(M) is a submodule of M, we use the submodule criterion. First note that $0 \in Tor(M)$ and so it is nonempty.

Next, let $r \in R$ and $x, y \in \text{Tor}(M)$. Then there exist $s, t \in R \setminus \{0\}$ for which sx = 0 and ty = 0. Since R is an integral domain $s \neq 0$ and $t \neq 0$ implies that $st \neq 0$. Also, R is necessarily commutative. Then

$$st \cdot (x + ry) = stx + stry = t \cdot (sx) + rs \cdot (ty) = t \cdot (0) + rs \cdot (0) = 0.$$

Since $st \in R \setminus \{0\}$ it follows that $x + ry \in Tor(M)$.

4. (10 points) Let $0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$ be an exact sequence of *R*-modules that splits. Prove that $B \cong A \oplus C$.

Solution: By definition, there is a homomorphism $\mu : C \to B$ for which $\psi \circ \mu = \mathrm{id}_C$. Then both $\varphi(A)$ and $\mu(C)$ are submodules of B. Since $\varphi(A) = \ker(\psi)$ and ψ defines an injective map on $\mu(C)$, it must be that $\varphi(A) \cap \mu(C) = \{0\}$.

To see that $B = \varphi(A) + \mu(C)$, let $b \in B$. Then $c = \psi(b) \in C$. More over

$$\psi(b - \mu(c)) = \psi(b) - \psi(\mu(c)) = c - c = 0.$$

Therefore $b - \mu(c) \in \ker(\psi) = \varphi(A)$, meaning that there is some $a \in A$ with

$$\varphi(a) = b - \mu(c) \implies b = \varphi(a) + \mu(c).$$

This shows that $B \cong \varphi(A) \oplus \mu(C)$. Since φ is injective on A and μ is injective on C, we have that $A \cong \varphi(A)$ and $C \cong \mu(C)$. Therefore

$$B \cong \varphi(A) \oplus \mu(C) \cong A \oplus C.$$

- 5. Let R denote the ring $\mathbb{Z} \oplus \mathbb{Z}$ under coordinate-wise addition and multiplication.
 - (a) (5 points) Show that $M = \mathbb{Z}$ is an *R*-module with $(a, b) \cdot z = az$.

Solution:

Note that $M = \mathbb{Z}$ is an abelian group under usual addition.

Let $(a, b), (c, d) \in R = \mathbb{Z} \oplus \mathbb{Z}$ and $z, w \in M = \mathbb{Z}$. Then

- $\bullet \ ((a,b)+(c,d)) \cdot z = (a+c,b+d) \cdot z = (a+c) \cdot z = az + cz = (a,b) \cdot z + (c,d) \cdot z,$
- $((a,b)\cdot(c,d))\cdot z = (ac,bd)\cdot z = (ac)\cdot z = acz = (a,b)\cdot cz = (a,b)\cdot((c,d)\cdot z),$
- $(a,b) \cdot (z+w) = a(z+w) = az + aw = (a,b) \cdot z + (a,b) \cdot w$
- (1,1) is the multiplicative identity in R and $(1,1) \cdot z = 1z = z$.

Therefore this action makes $M = \mathbb{Z}$ into an *R*-module.

(b) (5 points) Circle all that apply. Do not justify your answers.

As an *R*-module, $M = \mathbb{Z}$ is ... free projective injective flat finitely generated

- 6. (15 points) True or false. Circle one. Do not justify your answers.
 - (a) An *R*-module *M* is finitely-generated if and only if it is a quotient of a free module R^n for some $n \in \mathbb{Z}_{\geq 0}$.

True

False

(b) An *R*-module homomorphism $\Phi : M \otimes_R M \to N$ is injective if and only if the *R*-bilinear map $\phi : M \times M \to N$ given by $\phi(m_1, m_2) = \Phi(m_1 \otimes m_2)$ is injective.

True

False

(c) If R is a commutative ring with $1_R \neq 0$, then every R-algebra is commutative.

True

False

(d) For every *R*-module homomorphism $\varphi : A \to B$ there are submodules $A' \subseteq A$ and $B' \subseteq B$ for which the sequence $0 \to A' \xrightarrow{i} A \xrightarrow{\varphi} B' \to 0$ is exact, where the map $i : A' \to A$ is given by inclusion.

True

False

(e) $\langle x^2 \rangle$ is a graded ideal in $\mathbb{Q}[x, y]$.

True

False