MA 721 - Midterm I Spring 2020 Solutions

Name:

Question	Points	Score
1	15	
2	10	
3	10	
4	10	
5	10	
6	15	
Total:	70	

1. (a) (5 points) For each of the following, give a simpler description the module up to isomorphism (e.g. $\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 5 \mathbb{Z} \cong \mathbb{Z} / 15 \mathbb{Z}$). Do not justify your answers.

$$
\begin{aligned}
\mathbb{Z} / 3 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 3 \mathbb{Z} & \cong \mathbb{Z} / 3 \mathbb{Z} \\
\mathbb{Z} / 3 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 5 \mathbb{Z} & \cong\{0\} \\
\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}^{2} & \cong \mathbb{Q}^{2} \\
\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z}) & \cong\{0\} \\
\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}^{2}, \mathbb{Z} / 3 \mathbb{Z}\right) & \cong(\mathbb{Z} / 3 \mathbb{Z})^{2}
\end{aligned}
$$

(b) (10 points) Suppose that V and W are vectorspaces over a field F of dimensions n and m, respectively. For each of the following F-vectorspaces give the dimension and a basis, assuming that $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V and $\left\{w_{1}, \ldots, w_{m}\right\}$ is a basis for W. Do not justify your answers.
$\left.\begin{array}{c|c|c}\text { Module } & \text { Dimension } & \text { Basis } \\ \hline V \oplus W & m+n & \left\{\left(v_{i}, 0\right),\left(0, w_{j}\right): i=1, \ldots, n, j=1, \ldots, m\right\} \\ \hline V \otimes_{F} W & m \cdot n & \left\{v_{i} \otimes w_{j}: i=1, \ldots, n, j=1, \ldots, m\right\} \\ \hline \operatorname{Hom}_{F}(V, W) & m \cdot n & \begin{array}{c}\left\{\varphi_{i j}: i=1, \ldots, n, j=1, \ldots, m\right\} \\ \text { where } \varphi_{i j}\left(v_{i}\right)=w_{j} \text { and } \varphi_{i j}\left(v_{k}\right)=0 \text { for } k \neq i\end{array} \\ \hline \mathcal{S}^{3}(V) & \left.\begin{array}{c}n+2 \\ 3\end{array}\right) & \left\{v_{i_{1}} \otimes v_{i_{2}} \otimes v_{i_{3}}+\mathcal{C}^{3}(V): 1 \leq i_{1} \leq i_{2} \leq i_{3} \leq n\right\}\end{array}\right]$
2. Let A, B, and C be R-modules.
(a) (5 points) Give an explicit isomorphism

$$
\Phi:(A \oplus B) \otimes_{R} C \rightarrow\left(A \otimes_{R} C\right) \oplus\left(B \otimes_{R} C\right)
$$

by giving values of Φ and its inverse on simple tensors.
Do not justify your answers.

$$
\begin{aligned}
& \text { Solution: } \\
& \Phi((a, b) \otimes c))=(a \otimes c, b \otimes c) \\
& \Phi^{-1}\left(a \otimes c_{1}, b \otimes c_{2}\right)=(a, 0) \otimes c_{1}+(0, b) \otimes c_{2}
\end{aligned}
$$

(b) (5 points) Similarly, describe an explicit isomorphism

$$
\operatorname{Hom}_{R}(A \oplus B, C) \rightarrow \operatorname{Hom}_{R}(A, C) \oplus \operatorname{Hom}_{R}(B, C)
$$

and its inverse. Do not justify your answers.

Solution: Define $\Phi: \operatorname{Hom}_{R}(A \oplus B, C) \rightarrow \operatorname{Hom}_{R}(A, C) \oplus \operatorname{Hom}_{R}(B, C)$ as follows. For a homomorphism $\varphi \in \operatorname{Hom}_{R}(A \oplus B, C)$, define

$$
\Phi(\varphi)=\left(\psi_{1}, \psi_{2}\right) \text { where } \psi_{1}(a)=\varphi(a, 0) \text { and } \psi_{2}(b)=\varphi(0, b)
$$

For $\left(\psi_{1}, \psi_{2}\right) \in \operatorname{Hom}_{R}(A, C) \oplus \operatorname{Hom}_{R}(B, C)$,

$$
\Phi^{-1}\left(\psi_{1}, \psi_{2}\right)=\varphi \text { where } \varphi(a, b)=\psi_{1}(a)+\psi_{2}(b)
$$

3. (10 points) Given an R-module M, the set of torsion elements of M is defined to be

$$
\operatorname{Tor}(M)=\{m \in M: r m=0 \text { for some } r \in R \backslash\{0\}\} .
$$

Show that if R is an integral domain, then $\operatorname{Tor}(M)$ is a submodule of M.

Solution: To check that $\operatorname{Tor}(M)$ is a submodule of M, we use the submodule criterion. First note that $0 \in \operatorname{Tor}(M)$ and so it is nonempty.
Next, let $r \in R$ and $x, y \in \operatorname{Tor}(M)$. Then there exist $s, t \in R \backslash\{0\}$ for which $s x=0$ and $t y=0$. Since R is an integral domain $s \neq 0$ and $t \neq 0$ implies that st $\neq 0$. Also, R is necessarily commutative. Then

$$
s t \cdot(x+r y)=s t x+s t r y=t \cdot(s x)+r s \cdot(t y)=t \cdot(0)+r s \cdot(0)=0 .
$$

Since st $\in R \backslash\{0\}$ it follows that $x+r y \in \operatorname{Tor}(M)$.
4. (10 points) Let $0 \rightarrow A \xrightarrow{\varphi} B \xrightarrow{\psi} C \rightarrow 0$ be an exact sequence of R-modules that splits. Prove that $B \cong A \oplus C$.

Solution: By definition, there is a homomorphism $\mu: C \rightarrow B$ for which $\psi \circ \mu=\mathrm{id}_{C}$. Then both $\varphi(A)$ and $\mu(C)$ are submodules of B. Since $\varphi(A)=\operatorname{ker}(\psi)$ and ψ defines an injective map on $\mu(C)$, it must be that $\varphi(A) \cap \mu(C)=\{0\}$.

To see that $B=\varphi(A)+\mu(C)$, let $b \in B$. Then $c=\psi(b) \in C$. More over

$$
\psi(b-\mu(c))=\psi(b)-\psi(\mu(c))=c-c=0
$$

Therefore $b-\mu(c) \in \operatorname{ker}(\psi)=\varphi(A)$, meaning that there is some $a \in A$ with

$$
\varphi(a)=b-\mu(c) \Rightarrow b=\varphi(a)+\mu(c) .
$$

This shows that $B \cong \varphi(A) \oplus \mu(C)$. Since φ is injective on A and μ is injective on C, we have that $A \cong \varphi(A)$ and $C \cong \mu(C)$. Therefore

$$
B \cong \varphi(A) \oplus \mu(C) \cong A \oplus C
$$

5. Let R denote the ring $\mathbb{Z} \oplus \mathbb{Z}$ under coordinate-wise addition and multiplication.
(a) (5 points) Show that $M=\mathbb{Z}$ is an R-module with $(a, b) \cdot z=a z$.

Solution:

Note that $M=\mathbb{Z}$ is an abelian group under usual addition.

Let $(a, b),(c, d) \in R=\mathbb{Z} \oplus \mathbb{Z}$ and $z, w \in M=\mathbb{Z}$. Then

- $((a, b)+(c, d)) \cdot z=(a+c, b+d) \cdot z=(a+c) \cdot z=a z+c z=(a, b) \cdot z+(c, d) \cdot z$,
- $((a, b) \cdot(c, d)) \cdot z=(a c, b d) \cdot z=(a c) \cdot z=a c z=(a, b) \cdot c z=(a, b) \cdot((c, d) \cdot z)$,
- $(a, b) \cdot(z+w)=a(z+w)=a z+a w=(a, b) \cdot z+(a, b) \cdot w$
- $(1,1)$ is the multiplicative identity in R and $(1,1) \cdot z=1 z=z$.

Therefore this action makes $M=\mathbb{Z}$ into an R-module.
(b) (5 points) Circle all that apply. Do not justify your answers.

As an R-module, $M=\mathbb{Z}$ is \ldots
free projective
injective
Hat
finitely generated
6. (15 points) True or false. Circle one. Do not justify your answers.
(a) An R-module M is finitely-generated if and only if it is a quotient of a free module R^{n} for some $n \in \mathbb{Z}_{\geq 0}$.
(b) An R-module homomorphism $\Phi: M \otimes_{R} M \rightarrow N$ is injective if and only if the R-bilinear map $\phi: M \times M \rightarrow N$ given by $\phi\left(m_{1}, m_{2}\right)=\Phi\left(m_{1} \otimes m_{2}\right)$ is injective.

True
False
(c) If R is a commutative ring with $1_{R} \neq 0$, then every R-algebra is commutative.

True

False

(d) For every R-module homomorphism $\varphi: A \rightarrow B$ there are submodules $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ for which the sequence $0 \rightarrow A^{\prime} \xrightarrow{i} A \xrightarrow{\varphi} B^{\prime} \rightarrow 0$ is exact, where the map $i: A^{\prime} \rightarrow A$ is given by inclusion.
True False
(e) $\left\langle x^{2}\right\rangle$ is a graded ideal in $\mathbb{Q}[x, y]$.

False

