MA 721 – Final Exam Spring 2020 Solutions

Question	Points	Score
1	10	
2	5	
3	9	
4	10	
5	10	
6	15	
7	10	
8	20	
9	21	
Total:	110	

- 1. (10 points) Consider the ring $R = M_2(\mathbb{Z})$ of 2×2 matrices over \mathbb{Z} . Let $M = \mathbb{Z}^2$.
 - (a) Show that M is an R-module under the action of left multiplication (i.e. identifying M with the space of 2×1 matrices over \mathbb{Z} and letting $A \cdot v = Av$ for $A \in R, v \in M$).

Solution: Note that \mathbb{Z}^2 is an abelian group under addition. Let $A, B \in M_2(\mathbb{Z})$ and $v, w \in M$. Then

- (A+B)v = Av + Bv
- (AB)v = A(Bv)
- A(v+w) = Av + Aw
- $I_2v = v$, where I_2 is the 2 × 2 identity matrix.
- (b) Find a nontrivial submodule $0 \subsetneq N \subsetneq M$.

Solution: Consider $N = 2M = \{(2x, 2y) : x, y \in \mathbb{Z}\}$. Note that $0 \subsetneq N \subsetneq M$, since $(2, 2) \in N \setminus \{0\}$ and $(1, 1) \in M \setminus N$.

To see that N is a submodule, let $v, w \in M$ with $2v, 2w \in N$ and $A \in R$. Then $2v + 2w = 2(v + w) \in N$ and $A(2v) = 2(Av) \in N$, showing that N is a submodule.

2. (5 points) Find the Jordan canonical form of the linear transformation given by multiplication by 1 + x on the Q-vectorspace $\mathbb{Q}[x]/\langle x^2(x-1)^2 \rangle$. Do not justify your answers.

Solution: First we write $\mathbb{Q}[x]/\langle x^2(x-1)^2\rangle \cong \mathbb{Q}[x]/\langle x^2\rangle \oplus \mathbb{Q}[x]/\langle (x-1)^2\rangle$. The Jordan canonical form of multiplication by x is

(0	1	0	0	
$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	0	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	
0	0	1	1	·
$\left(0 \right)$	0	0	1/	

Since multiplication by 1 acts as the identity on $\mathbb{Q}[x]/\langle x^2 \rangle \oplus \mathbb{Q}[x]/\langle (x-1)^2 \rangle$, The Jordan canonical form of multiplication by 1 + x is

 $\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$

- 3. (9 points) Fill in the blank with another commonly used term from algebra (not involving the term "module"). Do not justify your answers.
 - (a) A module over a field F is the same as a(n) _____.
 - (b) A module over \mathbb{Z} is the same as a(n) _____.
 - (c) An R-submodule of a ring R is the same as a(n) _____.

Solution:

- (a) *F*-vector space
- (b) abelian group
- (c) (left) ideal of R
- 4. (10 points) Let $R = M_{n_1}(\mathbb{C}) \times \ldots \times M_{n_r}(\mathbb{C})$, where $n_1, \ldots, n_r \in \mathbb{Z}_{>0}$. In terms of r, n_1, \ldots, n_r , describe each of the following. Do not justify your answers.
 - (a) The dimension of R as a \mathbb{C} -vectorspace.
 - (b) The dimension of the center of R, as a \mathbb{C} -vectorspace.
 - (c) The number of primitive central idempotents in R.
 - (d) The number of distinct (i.e. non-isomorphic) irreducible *R*-modules.
 - (e) The dimensions of the distinct irreducible *R*-modules.(This should be a list of numbers with length equal to your answer from (d).)

Solution:

(a)
$$\sum_{i=1}^{r} n_i^2$$

- (b) r
- (c) *r*
- (d) r
- (e) n_1, n_2, \ldots, n_r .

(Hint: what are the possibilities for the minimal polynomial and eigenvalues of $\varphi(g)$?)

Solution: Since φ is a group homomorphism, $\varphi(id) = I_n$ and

$$I_n = \varphi(\mathrm{id}) = \varphi(g^2) = (\varphi(g))^2.$$

Since the matrix $\varphi(g)$ satisfies the polynomial $x^2 - 1 = 0$, the minimal polynomial of $\varphi(g)$ divides $x^2 - 1 = (x+1)(x-1)$. Since this is squarefree, $\varphi(g)$ is diagonalizable. There is some $U \in \operatorname{GL}_n(\mathbb{C})$, s.t.

$$\varphi(g) = U \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} U^{-1}$$

Moreover, the eigenvalues $\lambda_1, \ldots, \lambda_n$ are roots of the minimal polynomial, which can only be ± 1 (since it divides $x^2 - 1$). Since $\lambda_1, \ldots, \lambda_n \in \{\pm 1\} \subset \mathbb{Z}$,

$$\chi(g) = \operatorname{trace}(\varphi(g)) = \lambda_1 + \lambda_2 + \ldots + \lambda_n \in \mathbb{Z}.$$

6. (15 points) Here is the character table of a mystery finite group G, with conjugacy classes {id}, K_2, K_3, K_4 :

	${id}$	K_2	K_3	K_4
χ_1	1	1	1	1
	1	1	1	-1
χ_3			$(-1 - \sqrt{5})/2$	0
χ_4	2	$(-1 - \sqrt{5})/2$	$(-1+\sqrt{5})/2$	0

Make sure to justify your answers to each of the following:

(a) What is the size of G?

Solution: The size of G is $\sum_{i=1}^{4} (\chi_i(id))^2 = 1^2 + 1^2 + 2^2 + 2^2 = 1 + 1 + 4 + 4 = 10.$

(b) Is G abelian?

Solution: No. In abelian group, every conjugacy class has size one. However this is a group of size 10 with only 4 conjugacy classes.

Alternatively, By Wedderburn's Theorem, the group algebra $\mathbb{C}G$ is isomorphic to $M_1(\mathbb{C}) \times M_1(\mathbb{C}) \times M_2(\mathbb{C}) \times M_2(\mathbb{C})$. Since $M_2(\mathbb{C})$ is not commutative, we see that $\mathbb{C}G$ is not commutative and G is not abelian.

(c) What are the sizes of the conjugacy classes K_2, K_3, K_4 ?

Solution: By the second orthogonality theorem $|G|/|K_2| = \sum_{i=1}^{4} \chi_i(K_2)\overline{\chi_i(K_2)} = 1^2 + 1^2 + \left(\frac{-1+\sqrt{5}}{2}\right)^2 + \left(\frac{-1-\sqrt{5}}{2}\right)^2$ $= 1 + 1 + \frac{1 - 2\sqrt{2} + 5}{4} + \frac{1 + 2\sqrt{2} + 5}{4}$ $= 1 + 1 + 2 \cdot \frac{6}{4}$ = 5 $\Rightarrow |K_2| = |G|/5 = 2.$ Similarly, $|G|/|K_3| = \sum_{i=1}^{4} \chi_i(K_3)\overline{\chi_i(K_3)} = 1^2 + 1^2 + \left(\frac{-1 - \sqrt{5}}{2}\right)^2 + \left(\frac{-1 + \sqrt{5}}{2}\right)^2 = 5$ $\Rightarrow |K_3| = |G|/5 = 2$ and $|G|/|K_4| = \sum^{4} \chi_i(K_4) \overline{\chi_i(K_4)} = 1^2 + (-1)^2 + 0^2 + 0^2 = 2$ $\Rightarrow |K_4| = |G|/2 = 5.$ Alternatively, let $k_i = |K_i| \in \mathbb{Z}_{>0}$. Then $1 + k_2 + k_3 + k_4 = |G| = 10$. Moreover, $0 = \langle \chi_1, \chi_2 \rangle = 1 \cdot 1^2 + k_2 \cdot 1^2 + k_3 \cdot 1^2 + k_4 \cdot (1)(-1) = 1 + k_2 + k_3 - k_4$

It follows that $k_2 + k_3 = 4$ and $k_4 = 5$. Moreoever,

$$0 = \langle \chi_1, \chi_3 \rangle = 1 \cdot 1 \cdot 2 + k_2 \cdot 1 \cdot \left(\frac{-1 + \sqrt{5}}{2}\right) + k_3 \cdot 1 \cdot \left(\frac{-1 - \sqrt{5}}{2}\right) + k_4 \cdot (1)(0)$$

= 2 + (k_2 + k_3) $\left(\frac{-1}{2}\right) + (k_2 - k_3) \left(\frac{\sqrt{5}}{2}\right)$
= (k_2 - k_3) $\left(\frac{\sqrt{5}}{2}\right)$.
So $k_2 = k_3 = 2$.

(d) Let φ be a representation of G with character χ where $\chi(g) = \chi_3(g)^2 \chi_4(g)^2$ for all $g \in G$, i.e.

How does φ decompose into irreducible representations of G?

Solution: We calculate the inner products $\begin{aligned} \langle \chi, \chi_i \rangle &= \left(\frac{1}{10}\right) \left(1 \cdot \chi(\mathrm{id}) \cdot \chi_i(\mathrm{id}) + \sum_{j=2}^4 |K_j| \cdot \chi(K_j) \cdot \chi_i(K_j) \right) \\ &= \left(\frac{1}{10}\right) \left(1 \cdot 16 \cdot \chi_i(\mathrm{id}) + 2 \cdot 1 \cdot \chi_i(K_2) + 2 \cdot 1 \cdot \chi_i(K_3) + 5 \cdot 0 \cdot \chi_i(K_4) \right) \end{aligned}$ $\begin{aligned} \langle \chi, \chi_1 \rangle &= \left(\frac{1}{10}\right) \left(1 \cdot 16 \cdot 1 + 2 \cdot 1 \cdot 1 + 2 \cdot 1 \cdot 1 \right) = \left(\frac{1}{10}\right) (16 + 2 + 2) = 2 \\ \langle \chi, \chi_2 \rangle &= \left(\frac{1}{10}\right) \left(1 \cdot 16 \cdot 1 + 2 \cdot 1 \cdot 1 + 2 \cdot 1 \cdot 1 \right) = \left(\frac{1}{10}\right) (16 + 2 + 2) = 2 \\ \langle \chi, \chi_3 \rangle &= \left(\frac{1}{10}\right) \left(1 \cdot 16 \cdot 2 + 2 \cdot 1 \cdot \left(\frac{-1 + \sqrt{5}}{2}\right) + 2 \cdot 1 \cdot \left(\frac{-1 - \sqrt{5}}{2}\right) \right) = \left(\frac{1}{10}\right) (32 - 1 - 1) = 3 \\ \langle \chi, \chi_4 \rangle &= \left(\frac{1}{10}\right) \left(1 \cdot 16 \cdot 2 + 2 \cdot 1 \cdot \left(\frac{-1 - \sqrt{5}}{2}\right) + 2 \cdot 1 \cdot \left(\frac{-1 + \sqrt{5}}{2}\right) \right) = \left(\frac{1}{10}\right) (32 - 1 - 1) = 3 \end{aligned}$

Therefore $\chi = 2\chi_1 + 2\chi_2 + 3\chi_3 + 3\chi_4$ and φ is a direct sum of two copies of φ_1 and φ_2 and three copies of each of φ_3 and φ_4 , where φ_i is the irreducible representation corresponding to χ_i .

7. (10 points) Let F be the field $\mathbb{Z}/2\mathbb{Z}$. Given a set A, let FA denote the free F-module on A (i.e. the F-vectorspace with basis A). Consider the maps

$$0 \to F\{f_{123}, f_{124}\} \xrightarrow{d_1} F\{e_{12}, e_{13}, e_{14}, e_{23}, e_{24}, e_{34}\} \xrightarrow{d_2} F\{v_1, v_2, v_3, v_4\} \xrightarrow{d_3} 0 \to \dots$$

given by

 $d_1(f_{ijk}) = e_{ij} + e_{ik} + e_{jk}$ and $d_2(e_{ij}) = v_i + v_j$.

(a) Show that this is a cochain complex C.

Solution: Note that $d_2 \circ d_1 = 0$ to see this, note that

$$d_2(d_1(f_{ijk})) = d_2(e_{ij} + e_{ik} + e_{jk}) = d_2(e_{ij}) + d_2(e_{ik} + d_2(e_{jk}))$$

= $v_i + v_j + v_i + v_k + v_j + v_k = 2(v_i + v_j + v_k) = 0.$

Since d_3 is the zero map, $d_3 \circ d_2 = 0$ as well.

(b) Find the dimension, as an *F*-vectorspace, of $H^0(\mathcal{C})$, $H^1(\mathcal{C})$, and $H^2(\mathcal{C})$.

(Hint: first calculate the dimensions of the kernels and images of each d_i , and remember the rank-nullity theorem from linear algebra. You can use without proof that the image of d_2 is the (3-dimensional) hyperplane $\{a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 : a_1 + a_2 + a_3 + a_4 = 0\}.$)

Solution: Since $d_1(f_{123})$ and $d_1(f_{124})$ are not scalar multiples of each other, we see that d_1 is injective, meaning that ker $(d_1) = \{0\}$ and dim_F(image (d_1)) = 2. By assumption, the image of d_2 has dimension 3, and so its kernel has dimension 6 - 3 = 3. Finally, since d_3 is the zero map, its kernel has full dimension 4.

 $\dim_F \left(H^0(\mathcal{C}) \right) = \dim_F \left(\ker(d_1) \right) = 0$ $\dim_F \left(H^1(\mathcal{C}) \right) = \dim_F \left(\ker(d_2) / \operatorname{image}(d_1) \right) = \dim_F \left(\ker(d_2) \right) - \dim_F \left(\operatorname{image}(d_1) \right) = 3 - 2 = 1$ $\dim_F \left(H^2(\mathcal{C}) \right) = \dim_F \left(\ker(d_3) / \operatorname{image}(d_2) \right) = \dim_F \left(\ker(d_3) \right) - \dim_F \left(\operatorname{image}(d_2) \right) = 4 - 3 = 1$ 8. (20 points) Consider the Z-module $M = \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$ and the sequence of maps

$$0 \xrightarrow{\phi_2} \mathbb{Z}^2 \xrightarrow{\phi_1} \mathbb{Z}^3 \xrightarrow{\phi_0} M \to 0$$

where $\phi_2(0) = (0,0), \phi_1(a,b) = (0,2a,3b)$ and $\phi_0(x,y,z) = (x,y+2\mathbb{Z},z+3\mathbb{Z}).$

(a) Show that this is a projective resolution of M as a \mathbb{Z} -module.

Solution: Note that the modules $0, \mathbb{Z}^2, \mathbb{Z}^3$ are free and therefore projective \mathbb{Z} -modules. So it suffices to show that the sequence above is exact.

First note that the map ϕ_1 is injective, since $\phi_1(a, b) = (0, 2a, 3b) = (0, 0, 0)$ implies that (a, b) = (0, 0), meaning that the above sequence is exact at \mathbb{Z}^2 .

The kernel of ϕ_2 is $\{(x, y, z) : x = 0, y \in 2\mathbb{Z}, z \in 3\mathbb{Z}\}$, which is exactly the image of ϕ_1 , showing exactness at \mathbb{Z}^3 .

Finally, the map ϕ_0 is surjective, since $(x, y + 2\mathbb{Z}, z + 3\mathbb{Z}) \in M$ is the image of $(x, y, z) \in \mathbb{Z}^3$, giving exactness at M.

(b) Describe the cochain complex and maps obtained from applying $\operatorname{Hom}_{\mathbb{Z}}(-, \mathbb{Z}/2\mathbb{Z})$ to this resolution and use it to calculate $\operatorname{Ext}_{R}^{n}(M, \mathbb{Z}/2\mathbb{Z})$ for all $n \geq 0$.

Solution: Applying $\operatorname{Hom}_{\mathbb{Z}}(-, \mathbb{Z}/2\mathbb{Z})$ we get a cochain complex $0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Z}/2\mathbb{Z}) \xrightarrow{d_0} \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}^3, \mathbb{Z}/2\mathbb{Z}) \xrightarrow{d_1} \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}^2, \mathbb{Z}/2\mathbb{Z}) \xrightarrow{d_2} 0$ where $d_i(f) = f \circ \phi_i$. For n = 0, $\operatorname{Ext}^0_{\mathbb{Z}}(M, \mathbb{Z}/2\mathbb{Z}) \cong \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Z}/2\mathbb{Z})$ $\cong \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \oplus \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \oplus \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/3\mathbb{Z}, \mathbb{Z}/2\mathbb{Z})$ $\cong (\mathbb{Z}/2\mathbb{Z})^2$

Note that for $n \ge 2$, d_n is the zero map, so $\ker(d_{n+1}) = \operatorname{image}(d_n) = \{0\}$, showing that

$$\operatorname{Ext}_{\mathbb{Z}}^{n}(M, \mathbb{Z}/2\mathbb{Z}) = \operatorname{ker}(d_{n+1})/\operatorname{image}(d_{n}) = 0.$$

It only remains to find $\operatorname{Ext}_{\mathbb{Z}}^{1}(M, \mathbb{Z}/2\mathbb{Z}) = \operatorname{ker}(d_{2})/\operatorname{image}(d_{1})$. Note that Hom_Z($\mathbb{Z}^{k}, \mathbb{Z}/2\mathbb{Z}$) is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^{k}$. Specifically, let $f_{1}, f_{2}, f_{3} \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}^{3}, \mathbb{Z}/2\mathbb{Z})$ with $f_{1}(x, y, z) = x + 2\mathbb{Z}, f_{2}(x, y, z) = y + 2\mathbb{Z}$, and $f_{3}(x, y, z) = z + 2\mathbb{Z}$. Then

$$\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}^3, \mathbb{Z}/2\mathbb{Z}) = \{ u_1 f_1 + u_2 f_2 + u_3 f_3 : u_1, u_2, u_3 \in \mathbb{Z} \} \cong (\mathbb{Z}/2\mathbb{Z})^3$$

To find their image under d_1 note that

$$f_1(\phi_1(a,b)) = f_1(0,2a,3b) = 0$$

$$f_2(\phi_1(a,b)) = f_2(0,2a,3b) = 2a = 0$$

$$f_3(\phi_1(a,b)) = f_3(0,2a,3b) = 3b = b$$

So the image of d_1 is $\mathbb{Z}/2\mathbb{Z} \cdot g_2$ where $g_2(a, b) = b$.

Since d_2 is the zero-map, the kernel of d_2 is all of

 $\ker(d_2) = \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}^2, \mathbb{Z}/2\mathbb{Z}) = \{u_1g_1 + u_2g_2 : u_1, u_2 \in \mathbb{Z}\} \cong (\mathbb{Z}/2\mathbb{Z})^2$

where $g_1(a, b) = a + 2\mathbb{Z}$. Then

$$\operatorname{Ext}^{1}_{\mathbb{Z}}(M, \mathbb{Z}/2\mathbb{Z}) = \operatorname{ker}(d_{2})/\operatorname{image}(d_{1}) \cong \mathbb{Z}g_{1} \cong \mathbb{Z}/2\mathbb{Z}.$$

(c) Describe the chain complex and maps obtained from applying $\mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} -$ to this resolution and use them to calculate $\operatorname{Tor}_{n}^{R}(\mathbb{Z}/2\mathbb{Z}, M)$ for all $n \geq 0$.

(Your final answers to (b) and (c) should be expressions as finite abelian groups, not involving quotients, "ker", or "image")

Solution: Applying $\mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} -$ we get a chain complex $0 \xrightarrow{d_2} \mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}^2 \xrightarrow{d_1} \mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}^3 \xrightarrow{d_0} \mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} M \to 0.$ where $d_n = 1 \otimes \phi_n$. For n = 0, $\operatorname{Tor}_0^{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z}, M) \cong \mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} M$ $\cong (\mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}) \oplus (\mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/3\mathbb{Z})$ $\cong (\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/2\mathbb{Z}) \oplus 0$ $\cong (\mathbb{Z}/2\mathbb{Z})^2.$

Note that for $n \ge 2$, d_n is the zero map, so $\ker(d_{n+1}) = \operatorname{image}(d_n) = \{0\}$, showing that

 $\operatorname{Tor}_{n}^{\mathbb{Z}}(M, \mathbb{Z}/2\mathbb{Z}) = \ker(1 \otimes d_{n}) / \operatorname{image}(1 \otimes d_{n+1}) = 0.$

It remains to find

$$\operatorname{Tor}_{1}^{\mathbb{Z}}(M, \mathbb{Z}/2\mathbb{Z}) = \operatorname{ker}(1 \otimes d_{1}) / \operatorname{image}(1 \otimes d_{2}) \cong \operatorname{ker}(1 \otimes d_{1})$$

Note that every element of $\mathbb{Z}/2\mathbb{Z} \otimes \mathbb{Z}^k \cong (\mathbb{Z}/2\mathbb{Z})^k$ can be written as $\sum_{i=1}^k a_i \otimes e_i$ where $a_i \in \mathbb{Z}/2\mathbb{Z}$ and e_i is the *i* coordinate vector. Then

$$1 \otimes d_1(1 \times (a, b)) = 1 \otimes (0, 2a, 3b) = 1 \otimes (0, 2a, 0) + 1 \otimes (0, 0, 3b)$$
$$= 2a \cdot 1 \otimes (0, 1, 0) + 3b \cdot 1 \otimes (0, 0, 1)$$
$$= 3b \cdot 1 \otimes (0, 0, 1)$$

This equals zero if and only if $b \in 2\mathbb{Z}$. Then

$$\operatorname{Tor}_{1}^{\mathbb{Z}}(M, \mathbb{Z}/2\mathbb{Z}) \cong \{1 \otimes (a, 0) = a \cdot 1 \otimes (1, 0) : a \in \mathbb{Z}\} \cong \mathbb{Z}/2\mathbb{Z}.$$

- 9. (21 points) For each, answer True or False. Do not justify your answer.
 - (a) For any submodule N of a module M, there exists another submodule N' of M so that $M = N \oplus N'$.
 - (b) The tensor algebra, $\mathcal{T}(M)$, of a module M over a commutative ring R is commutative.
 - (c) Every matrix $A \in M_n(\mathbb{C})$ is similar to one of the form N + D where N is nilpotent and D is diagonal.
 - (d) Every finitely-generated torsion-free module over a PID is free.
 - (e) The module $\mathbb{Q}[x]/\langle x \rangle \oplus \mathbb{Q}[x]/\langle x-1 \rangle$ can be generated (as a $\mathbb{Q}[x]$ -module) by a single element.
 - (f) Every radical ideal in a Noetherian ring is the intersection of finitely many prime ideals.
 - (g) Let G be a finite group. Every function $G \to \mathbb{C}$ that is constant on conjugacy classes is the character of some representation of G.

Solution:			
(a) False.			
(b) False.			
(c) True.			
(d) True.			
(e) True.			
(f) True.			
(g) False.			