MA 721 - Final Exam Spring 2020 Solutions

Question	Points	Score
1	10	
2	5	
3	9	
4	10	
5	10	
6	15	
7	10	
8	20	
9	21	
Total:	110	

1. (10 points) Consider the ring $R=M_{2}(\mathbb{Z})$ of 2×2 matrices over \mathbb{Z}. Let $M=\mathbb{Z}^{2}$.
(a) Show that M is an R-module under the action of left multiplication (i.e. identifying M with the space of 2×1 matrices over \mathbb{Z} and letting $A \cdot v=A v$ for $A \in R, v \in M)$.

Solution: Note that \mathbb{Z}^{2} is an abelian group under addition. Let $A, B \in M_{2}(\mathbb{Z})$ and $v, w \in M$. Then

- $(A+B) v=A v+B v$
- $(A B) v=A(B v)$
- $A(v+w)=A v+A w$
- $I_{2} v=v$, where I_{2} is the 2×2 identity matrix.
(b) Find a nontrivial submodule $0 \subsetneq N \subsetneq M$.

Solution: Consider $N=2 M=\{(2 x, 2 y): x, y \in \mathbb{Z}\}$. Note that $0 \subsetneq N \subsetneq M$, since $(2,2) \in N \backslash\{0\}$ and $(1,1) \in M \backslash N$.

To see that N is a submodule, let $v, w \in M$ with $2 v, 2 w \in N$ and $A \in R$. Then $2 v+2 w=2(v+w) \in N$ and $A(2 v)=2(A v) \in N$, showing that N is a submodule.
2. (5 points) Find the Jordan canonical form of the linear transformation given by multiplication by $1+x$ on the \mathbb{Q}-vectorspace $\mathbb{Q}[x] /\left\langle x^{2}(x-1)^{2}\right\rangle$. Do not justify your answers.

Solution: First we write $\mathbb{Q}[x] /\left\langle x^{2}(x-1)^{2}\right\rangle \cong \mathbb{Q}[x] /\left\langle x^{2}\right\rangle \oplus \mathbb{Q}[x] /\left\langle(x-1)^{2}\right\rangle$. The Jordan canonical form of multiplication by x is

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Since multiplication by 1 acts as the identity on $\mathbb{Q}[x] /\left\langle x^{2}\right\rangle \oplus \mathbb{Q}[x] /\left\langle(x-1)^{2}\right\rangle$, The Jordan canonical form of multiplication by $1+x$ is

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{array}\right) .
$$

3. (9 points) Fill in the blank with another commonly used term from algebra (not involving the term "module"). Do not justify your answers.
(a) A module over a field F is the same as a(n) \qquad .
(b) A module over \mathbb{Z} is the same as a(n) \qquad .
(c) An R-submodule of a ring R is the same as a(n) \qquad .

Solution:

(a) F-vector space
(b) abelian group
(c) (left) ideal of R
4. (10 points) Let $R=M_{n_{1}}(\mathbb{C}) \times \ldots \times M_{n_{r}}(\mathbb{C})$, where $n_{1}, \ldots, n_{r} \in \mathbb{Z}_{>0}$.

In terms of r, n_{1}, \ldots, n_{r}, describe each of the following. Do not justify your answers.
(a) The dimension of R as a \mathbb{C}-vectorspace.
(b) The dimension of the center of R, as a \mathbb{C}-vectorspace.
(c) The number of primitive central idempotents in R.
(d) The number of distinct (i.e. non-isomorphic) irreducible R-modules.
(e) The dimensions of the distinct irreducible R-modules.
(This should be a list of numbers with length equal to your answer from (d).)

Solution:

(a) $\sum_{i=1}^{r} n_{i}^{2}$
(b) r
(c) r
(d) r
(e) $n_{1}, n_{2}, \ldots, n_{r}$.
5. (10 points) Let G be a finite group and $\varphi: G \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ a representation of G with character χ. Suppose that $g \in G$ has order 2 . Show that $\chi(g)$ is an integer.
(Hint: what are the possibilities for the minimal polynomial and eigenvalues of $\varphi(g)$?)

Solution: Since φ is a group homomorphism, $\varphi(\mathrm{id})=I_{n}$ and

$$
I_{n}=\varphi(\mathrm{id})=\varphi\left(g^{2}\right)=(\varphi(g))^{2} .
$$

Since the matrix $\varphi(g)$ satisfies the polynomial $x^{2}-1=0$, the minimal polynomial of $\varphi(g)$ divides $x^{2}-1=(x+1)(x-1)$. Since this is squarefree, $\varphi(g)$ is diagonalizable. There is some $U \in \mathrm{GL}_{n}(\mathbb{C})$, s.t.

$$
\varphi(g)=U\left(\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right) U^{-1}
$$

Moreover, the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are roots of the minimal polynomial, which can only be ± 1 (since it divides $x^{2}-1$). Since $\lambda_{1}, \ldots, \lambda_{n} \in\{ \pm 1\} \subset \mathbb{Z}$,

$$
\chi(g)=\operatorname{trace}(\varphi(g))=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n} \in \mathbb{Z} .
$$

6. (15 points) Here is the character table of a mystery finite group G, with conjugacy classes $\{\mathrm{id}\}, K_{2}, K_{3}, K_{4}$:

	$\{\mathrm{id}\}$	K_{2}	K_{3}	K_{4}
χ_{1}	1	1	1	1
χ_{2}	1	1	1	-1
χ_{3}	2	$(-1+\sqrt{5}) / 2$	$(-1-\sqrt{5}) / 2$	0
χ_{4}	2	$(-1-\sqrt{5}) / 2$	$(-1+\sqrt{5}) / 2$	0

Make sure to justify your answers to each of the following:
(a) What is the size of G ?

Solution: The size of G is $\sum_{i=1}^{4}\left(\chi_{i}(\mathrm{id})\right)^{2}=1^{2}+1^{2}+2^{2}+2^{2}=1+1+4+4=10$.
(b) Is G abelian?

Solution: No. In abelian group, every conjugacy class has size one. However this is a group of size 10 with only 4 conjugacy classes.

Alternatively, By Wedderburn's Theorem, the group algebra $\mathbb{C} G$ is isomorphic to $M_{1}(\mathbb{C}) \times M_{1}(\mathbb{C}) \times M_{2}(\mathbb{C}) \times M_{2}(\mathbb{C})$. Since $M_{2}(\mathbb{C})$ is not commutative, we see that $\mathbb{C} G$ is not commutative and G is not abelian.
(c) What are the sizes of the conjugacy classes K_{2}, K_{3}, K_{4} ?

Solution: By the second orthogonality theorem

$$
\begin{aligned}
|G| /\left|K_{2}\right|=\sum_{i=1}^{4} \chi_{i}\left(K_{2}\right) \overline{\chi_{i}\left(K_{2}\right)} & =1^{2}+1^{2}+\left(\frac{-1+\sqrt{5}}{2}\right)^{2}+\left(\frac{-1-\sqrt{5}}{2}\right)^{2} \\
& =1+1+\frac{1-2 \sqrt{2}+5}{4}+\frac{1+2 \sqrt{2}+5}{4} \\
& =1+1+2 \cdot \frac{6}{4} \\
\Rightarrow\left|K_{2}\right|=|G| / 5=2 . & =5
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& |G| /\left|K_{3}\right|=\sum_{i=1}^{4} \chi_{i}\left(K_{3}\right) \overline{\chi_{i}\left(K_{3}\right)}=1^{2}+1^{2}+\left(\frac{-1-\sqrt{5}}{2}\right)^{2}+\left(\frac{-1+\sqrt{5}}{2}\right)^{2}=5 \\
& \Rightarrow\left|K_{3}\right|=|G| / 5=2
\end{aligned}
$$

and

$$
\begin{aligned}
& |G| /\left|K_{4}\right|=\sum_{i=1}^{4} \chi_{i}\left(K_{4}\right) \overline{\chi_{i}\left(K_{4}\right)}=1^{2}+(-1)^{2}+0^{2}+0^{2}=2 \\
& \Rightarrow\left|K_{4}\right|=|G| / 2=5 .
\end{aligned}
$$

Alternatively, let $k_{i}=\left|K_{i}\right| \in \mathbb{Z}_{>0}$. Then $1+k_{2}+k_{3}+k_{4}=|G|=10$. Moreover,

$$
0=\left\langle\chi_{1}, \chi_{2}\right\rangle=1 \cdot 1^{2}+k_{2} \cdot 1^{2}+k_{3} \cdot 1^{2}+k_{4} \cdot(1)(-1)=1+k_{2}+k_{3}-k_{4}
$$

It follows that $k_{2}+k_{3}=4$ and $k_{4}=5$. Moreoever,

$$
\begin{aligned}
0 & =\left\langle\chi_{1}, \chi_{3}\right\rangle=1 \cdot 1 \cdot 2+k_{2} \cdot 1 \cdot\left(\frac{-1+\sqrt{5}}{2}\right)+k_{3} \cdot 1 \cdot\left(\frac{-1-\sqrt{5}}{2}\right)+k_{4} \cdot(1)(0) \\
& =2+\left(k_{2}+k_{3}\right)\left(\frac{-1}{2}\right)+\left(k_{2}-k_{3}\right)\left(\frac{\sqrt{5}}{2}\right) \\
& =\left(k_{2}-k_{3}\right)\left(\frac{\sqrt{5}}{2}\right) .
\end{aligned}
$$

So $k_{2}=k_{3}=2$.
(d) Let φ be a representation of G with character χ where $\chi(g)=\chi_{3}(g)^{2} \chi_{4}(g)^{2}$ for all $g \in G$, i.e.

$$
\begin{array}{c|cccc}
& \{\mathrm{id}\} & K_{2} & K_{3} & K_{4} \\
\hline \chi & 16 & 1 & 1 & 0
\end{array}
$$

How does φ decompose into irreducible representations of G ?

Solution: We calculate the inner products

$$
\begin{aligned}
\left\langle\chi, \chi_{i}\right\rangle & =\left(\frac{1}{10}\right)\left(1 \cdot \chi(\mathrm{id}) \cdot \chi_{i}(\mathrm{id})+\sum_{j=2}^{4}\left|K_{j}\right| \cdot \chi\left(K_{j}\right) \cdot \chi_{i}\left(K_{j}\right)\right) \\
& =\left(\frac{1}{10}\right)\left(1 \cdot 16 \cdot \chi_{i}(\mathrm{id})+2 \cdot 1 \cdot \chi_{i}\left(K_{2}\right)+2 \cdot 1 \cdot \chi_{i}\left(K_{3}\right)+5 \cdot 0 \cdot \chi_{i}\left(K_{4}\right)\right) \\
\left\langle\chi, \chi_{1}\right\rangle & =\left(\frac{1}{10}\right)(1 \cdot 16 \cdot 1+2 \cdot 1 \cdot 1+2 \cdot 1 \cdot 1)=\left(\frac{1}{10}\right)(16+2+2)=2 \\
\left\langle\chi, \chi_{2}\right\rangle & =\left(\frac{1}{10}\right)(1 \cdot 16 \cdot 1+2 \cdot 1 \cdot 1+2 \cdot 1 \cdot 1)=\left(\frac{1}{10}\right)(16+2+2)=2 \\
\left\langle\chi, \chi_{3}\right\rangle & =\left(\frac{1}{10}\right)\left(1 \cdot 16 \cdot 2+2 \cdot 1 \cdot\left(\frac{-1+\sqrt{5}}{2}\right)+2 \cdot 1 \cdot\left(\frac{-1-\sqrt{5}}{2}\right)\right)=\left(\frac{1}{10}\right)(32-1-1)=3 \\
\left\langle\chi, \chi_{4}\right\rangle & =\left(\frac{1}{10}\right)\left(1 \cdot 16 \cdot 2+2 \cdot 1 \cdot\left(\frac{-1-\sqrt{5}}{2}\right)+2 \cdot 1 \cdot\left(\frac{-1+\sqrt{5}}{2}\right)\right)=\left(\frac{1}{10}\right)(32-1-1)=3
\end{aligned}
$$

Therefore $\chi=2 \chi_{1}+2 \chi_{2}+3 \chi_{3}+3 \chi_{4}$ and φ is a direct sum of two copies of φ_{1} and φ_{2} and three copies of each of φ_{3} and φ_{4}, where φ_{i} is the irreducible representation corresponding to χ_{i}.
7. (10 points) Let F be the field $\mathbb{Z} / 2 \mathbb{Z}$. Given a set A, let $F A$ denote the free F-module on A (i.e. the F-vectorspace with basis A). Consider the maps

$$
0 \rightarrow F\left\{f_{123}, f_{124}\right\} \xrightarrow{d_{1}} F\left\{e_{12}, e_{13}, e_{14}, e_{23}, e_{24}, e_{34}\right\} \xrightarrow{d_{2}} F\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \xrightarrow{d_{3}} 0 \rightarrow \ldots
$$

given by

$$
d_{1}\left(f_{i j k}\right)=e_{i j}+e_{i k}+e_{j k} \quad \text { and } \quad d_{2}\left(e_{i j}\right)=v_{i}+v_{j} .
$$

(a) Show that this is a cochain complex \mathcal{C}.

Solution: Note that $d_{2} \circ d_{1}=0$ to see this, note that

$$
\begin{aligned}
d_{2}\left(d_{1}\left(f_{i j k}\right)\right)=d_{2}\left(e_{i j}+e_{i k}+e_{j k}\right) & =d_{2}\left(e_{i j}\right)+d_{2}\left(e_{i k}+d_{2}\left(e_{j k}\right)\right. \\
& =v_{i}+v_{j}+v_{i}+v_{k}+v_{j}+v_{k}=2\left(v_{i}+v_{j}+v_{k}\right)=0 .
\end{aligned}
$$

Since d_{3} is the zero map, $d_{3} \circ d_{2}=0$ as well.
(b) Find the dimension, as an F-vectorspace, of $H^{0}(\mathcal{C}), H^{1}(\mathcal{C})$, and $H^{2}(\mathcal{C})$.
(Hint: first calculate the dimensions of the kernels and images of each d_{i}, and remember the rank-nullity theorem from linear algebra. You can use without proof that the image of d_{2} is the (3-dimensional) hyperplane $\left.\left\{a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+a_{4} v_{4}: a_{1}+a_{2}+a_{3}+a_{4}=0\right\}.\right)$

Solution: Since $\left.d_{1}\left(f_{123}\right)\right)$ and $\left.d_{1}\left(f_{124}\right)\right)$ are not scalar multiples of each other, we see that d_{1} is injective, meaning that $\operatorname{ker}\left(d_{1}\right)=\{0\}$ and $\operatorname{dim}_{F}\left(\operatorname{image}\left(d_{1}\right)\right)=2$. By assumption, the image of d_{2} has dimension 3, and so its kernel has dimension $6-3=3$. Finally, since d_{3} is the zero map, its kernel has full dimension 4 .
$\operatorname{dim}_{F}\left(H^{0}(\mathcal{C})\right)=\operatorname{dim}_{F}\left(\operatorname{ker}\left(d_{1}\right)\right)=0$
$\operatorname{dim}_{F}\left(H^{1}(\mathcal{C})\right)=\operatorname{dim}_{F}\left(\operatorname{ker}\left(d_{2}\right) / \operatorname{image}\left(d_{1}\right)\right)=\operatorname{dim}_{F}\left(\operatorname{ker}\left(d_{2}\right)\right)-\operatorname{dim}_{F}\left(\operatorname{image}\left(d_{1}\right)\right)=3-2=1$
$\operatorname{dim}_{F}\left(H^{2}(\mathcal{C})\right)=\operatorname{dim}_{F}\left(\operatorname{ker}\left(d_{3}\right) / \operatorname{image}\left(d_{2}\right)\right)=\operatorname{dim}_{F}\left(\operatorname{ker}\left(d_{3}\right)\right)-\operatorname{dim}_{F}\left(\operatorname{image}\left(d_{2}\right)\right)=4-3=1$
8. (20 points) Consider the \mathbb{Z}-module $M=\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$ and the sequence of maps

$$
0 \xrightarrow{\phi_{2}} \mathbb{Z}^{2} \xrightarrow{\phi_{1}} \mathbb{Z}^{3} \xrightarrow{\phi_{0}} M \rightarrow 0
$$

where $\phi_{2}(0)=(0,0), \phi_{1}(a, b)=(0,2 a, 3 b)$ and $\phi_{0}(x, y, z)=(x, y+2 \mathbb{Z}, z+3 \mathbb{Z})$.
(a) Show that this is a projective resolution of M as a \mathbb{Z}-module.

Solution: Note that the modules $0, \mathbb{Z}^{2}, \mathbb{Z}^{3}$ are free and therefore projective \mathbb{Z}-modules. So it suffices to show that the sequence above is exact.
First note that the map ϕ_{1} is injective, since $\phi_{1}(a, b)=(0,2 a, 3 b)=(0,0,0)$ implies that $(a, b)=(0,0)$, meaning that the above sequence is exact at \mathbb{Z}^{2}.
The kernel of ϕ_{2} is $\{(x, y, z): x=0, y \in 2 \mathbb{Z}, z \in 3 \mathbb{Z}\}$, which is exactly the image of ϕ_{1}, showing exactness at \mathbb{Z}^{3}.
Finally, the map ϕ_{0} is surjective, since $(x, y+2 \mathbb{Z}, z+3 \mathbb{Z}) \in M$ is the image of $(x, y, z) \in \mathbb{Z}^{3}$, giving exactness at M.
(b) Describe the cochain complex and maps obtained from applying $\operatorname{Hom}_{\mathbb{Z}}(-, \mathbb{Z} / 2 \mathbb{Z})$ to this resolution and use it to calculate $\operatorname{Ext}_{R}^{n}(M, \mathbb{Z} / 2 \mathbb{Z})$ for all $n \geq 0$.

Solution: Applying $\operatorname{Hom}_{\mathbb{Z}}(-, \mathbb{Z} / 2 \mathbb{Z})$ we get a cochain complex

$$
0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Z} / 2 \mathbb{Z}) \xrightarrow{d_{0}} \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}^{3}, \mathbb{Z} / 2 \mathbb{Z}\right) \xrightarrow{d_{1}} \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}^{2}, \mathbb{Z} / 2 \mathbb{Z}\right) \xrightarrow{d_{2}} 0
$$

where $d_{i}(f)=f \circ \phi_{i}$.
For $n=0$,

$$
\begin{aligned}
\operatorname{Ext}_{\mathbb{Z}}^{0}(M, \mathbb{Z} / 2 \mathbb{Z}) & \cong \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Z} / 2 \mathbb{Z}) \\
& \cong \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z}) \oplus \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z}) \oplus \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z}) \\
& \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}
\end{aligned}
$$

Note that for $n \geq 2, d_{n}$ is the zero map, so $\operatorname{ker}\left(d_{n+1}\right)=\operatorname{image}\left(d_{n}\right)=\{0\}$, showing that

$$
\operatorname{Ext}_{\mathbb{Z}}^{n}(M, \mathbb{Z} / 2 \mathbb{Z})=\operatorname{ker}\left(d_{n+1}\right) / \operatorname{image}\left(d_{n}\right)=0
$$

It only remains to find $\operatorname{Ext}_{\mathbb{Z}}^{1}(M, \mathbb{Z} / 2 \mathbb{Z})=\operatorname{ker}\left(d_{2}\right) / \operatorname{image}\left(d_{1}\right)$. Note that $\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}^{k}, \mathbb{Z} / 2 \mathbb{Z}\right)$ is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{k}$. Specifically, let $f_{1}, f_{2}, f_{3} \in \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}^{3}, \mathbb{Z} / 2 \mathbb{Z}\right)$ with $f_{1}(x, y, z)=x+2 \mathbb{Z}, f_{2}(x, y, z)=y+2 \mathbb{Z}$, and $f_{3}(x, y, z)=z+2 \mathbb{Z}$. Then

$$
\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}^{3}, \mathbb{Z} / 2 \mathbb{Z}\right)=\left\{u_{1} f_{1}+u_{2} f_{2}+u_{3} f_{3}: u_{1}, u_{2}, u_{3} \in \mathbb{Z}\right\} \cong(\mathbb{Z} / 2 \mathbb{Z})^{3}
$$

To find their image under d_{1} note that

$$
\left.\begin{array}{rl}
f_{1}\left(\phi_{1}(a, b)\right) & =f_{1}(0,2 a, 3 b)
\end{array}=0 \quad \begin{array}{l}
f_{2}\left(\phi_{1}(a, b)\right) \\
f_{3}\left(\phi_{1}(a, b)\right)
\end{array}=f_{2}(0,2 a, 3 b)=2 a=0,2 a, 3 b\right)=3 b=b
$$

So the image of d_{1} is $\mathbb{Z} / 2 \mathbb{Z} \cdot g_{2}$ where $g_{2}(a, b)=b$.
Since d_{2} is the zero-map, the kernel of d_{2} is all of

$$
\operatorname{ker}\left(d_{2}\right)=\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}^{2}, \mathbb{Z} / 2 \mathbb{Z}\right)=\left\{u_{1} g_{1}+u_{2} g_{2}: u_{1}, u_{2} \in \mathbb{Z}\right\} \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}
$$

where $g_{1}(a, b)=a+2 \mathbb{Z}$. Then

$$
\operatorname{Ext}_{\mathbb{Z}}^{1}(M, \mathbb{Z} / 2 \mathbb{Z})=\operatorname{ker}\left(d_{2}\right) / \operatorname{image}\left(d_{1}\right) \cong \mathbb{Z} g_{1} \cong \mathbb{Z} / 2 \mathbb{Z}
$$

(c) Describe the chain complex and maps obtained from applying $\mathbb{Z} / 2 \mathbb{Z} \otimes_{\mathbb{Z}}$ - to this resolution and use them to calculate $\operatorname{Tor}_{n}^{R}(\mathbb{Z} / 2 \mathbb{Z}, M)$ for all $n \geq 0$.
(Your final answers to (b) and (c) should be expressions as finite abelian groups, not involving quotients, "ker", or "image")

Solution: Applying $\mathbb{Z} / 2 \mathbb{Z} \otimes_{\mathbb{Z}}$ - we get a chain complex

$$
0 \xrightarrow{d_{2}} \mathbb{Z} / 2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}^{2} \xrightarrow{d_{1}} \mathbb{Z} / 2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}^{3} \xrightarrow{d_{0}} \mathbb{Z} / 2 \mathbb{Z} \otimes_{\mathbb{Z}} M \rightarrow 0 .
$$

where $d_{n}=1 \otimes \phi_{n}$. For $n=0$,

$$
\begin{aligned}
\operatorname{Tor}_{0}^{\mathbb{Z}}(\mathbb{Z} / 2 \mathbb{Z}, M) & \cong \mathbb{Z} / 2 \mathbb{Z} \otimes_{\mathbb{Z}} M \\
& \cong\left(\mathbb{Z} / 2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}\right) \oplus\left(\mathbb{Z} / 2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}\right) \oplus\left(\mathbb{Z} / 2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 3 \mathbb{Z}\right) \\
& \cong(\mathbb{Z} / 2 \mathbb{Z}) \oplus(\mathbb{Z} / 2 \mathbb{Z}) \oplus 0 \\
& \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}
\end{aligned}
$$

Note that for $n \geq 2, d_{n}$ is the zero map, so $\operatorname{ker}\left(d_{n+1}\right)=\operatorname{image}\left(d_{n}\right)=\{0\}$, showing that

$$
\operatorname{Tor}_{n}^{\mathbb{Z}}(M, \mathbb{Z} / 2 \mathbb{Z})=\operatorname{ker}\left(1 \otimes d_{n}\right) / \operatorname{image}\left(1 \otimes d_{n+1}\right)=0
$$

It remains to find

$$
\operatorname{Tor}_{1}^{\mathbb{Z}}(M, \mathbb{Z} / 2 \mathbb{Z})=\operatorname{ker}\left(1 \otimes d_{1}\right) / \text { image }\left(1 \otimes d_{2}\right) \cong \operatorname{ker}\left(1 \otimes d_{1}\right)
$$

Note that every element of $\mathbb{Z} / 2 \mathbb{Z} \otimes \mathbb{Z}^{k} \cong(\mathbb{Z} / 2 \mathbb{Z})^{k}$ can be written as $\sum_{i=1}^{k} a_{i} \otimes e_{i}$ where $a_{i} \in \mathbb{Z} / 2 \mathbb{Z}$ and e_{i} is the i coordinate vector. Then

$$
\begin{aligned}
1 \otimes d_{1}(1 \times(a, b)) & =1 \otimes(0,2 a, 3 b)=1 \otimes(0,2 a, 0)+1 \otimes(0,0,3 b) \\
& =2 a \cdot 1 \otimes(0,1,0)+3 b \cdot 1 \otimes(0,0,1) \\
& =3 b \cdot 1 \otimes(0,0,1)
\end{aligned}
$$

This equals zero if and only if $b \in 2 \mathbb{Z}$. Then

$$
\operatorname{Tor}_{1}^{\mathbb{Z}}(M, \mathbb{Z} / 2 \mathbb{Z}) \cong\{1 \otimes(a, 0)=a \cdot 1 \otimes(1,0): a \in \mathbb{Z}\} \cong \mathbb{Z} / 2 \mathbb{Z}
$$

9. (21 points) For each, answer True or False. Do not justify your answer.
(a) For any submodule N of a module M, there exists another submodule N^{\prime} of M so that $M=N \oplus N^{\prime}$.
(b) The tensor algebra, $\mathcal{T}(M)$, of a module M over a commutative ring R is commutative.
(c) Every matrix $A \in M_{n}(\mathbb{C})$ is similar to one of the form $N+D$ where N is nilpotent and D is diagonal.
(d) Every finitely-generated torsion-free module over a PID is free.
(e) The module $\mathbb{Q}[x] /\langle x\rangle \oplus \mathbb{Q}[x] /\langle x-1\rangle$ can be generated (as a $\mathbb{Q}[x]$-module) by a single element.
(f) Every radical ideal in a Noetherian ring is the intersection of finitely many prime ideals.
(g) Let G be a finite group. Every function $G \rightarrow \mathbb{C}$ that is constant on conjugacy classes is the character of some representation of G.

Solution:

(a) False.
(b) False.
(c) True.
(d) True.
(e) True.
(f) True.
(g) False.

