
MA 721 – Final Exam
Spring 2020

Solutions

Question Points Score

1 10

2 5

3 9

4 10

5 10

6 15

7 10

8 20

9 21

Total: 110
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1. (10 points) Consider the ring R = M2(Z) of 2× 2 matrices over Z. Let M = Z2.

(a) Show that M is an R-module under the action of left multiplication (i.e. identifying
M with the space of 2×1 matrices over Z and letting A ·v = Av for A ∈ R, v ∈M).

Solution: Note that Z2 is an abelian group under addition. Let A,B ∈M2(Z) and
v, w ∈M . Then

• (A+B)v = Av +Bv

• (AB)v = A(Bv)

• A(v + w) = Av + Aw

• I2v = v, where I2 is the 2× 2 identity matrix.

(b) Find a nontrivial submodule 0 ( N (M .

Solution: Consider N = 2M = {(2x, 2y) : x, y ∈ Z}. Note that 0 ( N ( M , since
(2, 2) ∈ N\{0} and (1, 1) ∈M\N .

To see that N is a submodule, let v, w ∈ M with 2v, 2w ∈ N and A ∈ R. Then
2v + 2w = 2(v + w) ∈ N and A(2v) = 2(Av) ∈ N , showing that N is a submodule.

2. (5 points) Find the Jordan canonical form of the linear transformation given by multi-
plication by 1 + x on the Q-vectorspace Q[x]/〈x2(x− 1)2〉. Do not justify your answers.

Solution: First we write Q[x]/〈x2(x − 1)2〉 ∼= Q[x]/〈x2〉 ⊕ Q[x]/〈(x − 1)2〉. The
Jordan canonical form of multiplication by x is

0 1 0 0
0 0 0 0
0 0 1 1
0 0 0 1

 .

Since multiplication by 1 acts as the identity on Q[x]/〈x2〉 ⊕ Q[x]/〈(x − 1)2〉, The
Jordan canonical form of multiplication by 1 + x is

1 1 0 0
0 1 0 0
0 0 2 1
0 0 0 2

 .
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3. (9 points) Fill in the blank with another commonly used term from algebra (not involv-
ing the term “module”). Do not justify your answers.

(a) A module over a field F is the same as a(n) .

(b) A module over Z is the same as a(n) .

(c) An R-submodule of a ring R is the same as a(n) .

Solution:

(a) F -vector space

(b) abelian group

(c) (left) ideal of R

4. (10 points) Let R = Mn1(C)× . . .×Mnr(C), where n1, . . . , nr ∈ Z>0.
In terms of r, n1, . . . , nr, describe each of the following. Do not justify your answers.

(a) The dimension of R as a C-vectorspace.

(b) The dimension of the center of R, as a C-vectorspace.

(c) The number of primitive central idempotents in R.

(d) The number of distinct (i.e. non-isomorphic) irreducible R-modules.

(e) The dimensions of the distinct irreducible R-modules.
(This should be a list of numbers with length equal to your answer from (d).)

Solution:

(a)
∑r

i=1 n
2
i

(b) r

(c) r

(d) r

(e) n1, n2, . . . , nr.
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5. (10 points) Let G be a finite group and ϕ : G → GLn(C) a representation of G with
character χ. Suppose that g ∈ G has order 2. Show that χ(g) is an integer.

(Hint: what are the possibilities for the minimal polynomial and eigenvalues of ϕ(g)?)

Solution: Since ϕ is a group homomorphism, ϕ(id) = In and

In = ϕ(id) = ϕ(g2) = (ϕ(g))2.

Since the matrix ϕ(g) satisfies the polynomial x2−1 = 0, the minimal polynomial of
ϕ(g) divides x2 − 1 = (x+ 1)(x− 1). Since this is squarefree, ϕ(g) is diagonalizable.
There is some U ∈ GLn(C), s.t.

ϕ(g) = U


λ1

λ2
. . .

λn

U−1

Moreover, the eigenvalues λ1, . . . , λn are roots of the minimal polynomial, which can
only be ±1 (since it divides x2 − 1). Since λ1, . . . , λn ∈ {±1} ⊂ Z,

χ(g) = trace(ϕ(g)) = λ1 + λ2 + . . .+ λn ∈ Z.

6. (15 points) Here is the character table of a mystery finite group G, with conjugacy
classes {id}, K2, K3, K4:

{id} K2 K3 K4

χ1 1 1 1 1
χ2 1 1 1 −1

χ3 2 (−1 +
√

5)/2 (−1−
√

5)/2 0

χ4 2 (−1−
√

5)/2 (−1 +
√

5)/2 0

Make sure to justify your answers to each of the following:

(a) What is the size of G?

Solution: The size of G is
∑4

i=1(χi(id))2 = 12 + 12 + 22 + 22 = 1 + 1 + 4 + 4 = 10.

(b) Is G abelian?
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Solution: No. In abelian group, every conjugacy class has size one. However this
is a group of size 10 with only 4 conjugacy classes.

Alternatively, By Wedderburn’s Theorem, the group algebra CG is isomorphic to
M1(C) ×M1(C) ×M2(C) ×M2(C). Since M2(C) is not commutative, we see that
CG is not commutative and G is not abelian.

(c) What are the sizes of the conjugacy classes K2, K3, K4?

Solution: By the second orthogonality theorem

|G|/|K2| =
4∑
i=1

χi(K2)χi(K2) = 12 + 12 +

(
−1 +

√
5

2

)2

+

(
−1−

√
5

2

)2

= 1 + 1 +
1− 2

√
2 + 5

4
+

1 + 2
√

2 + 5

4

= 1 + 1 + 2 · 6

4
= 5

⇒ |K2| = |G|/5 = 2.

Similarly,

|G|/|K3| =
4∑
i=1

χi(K3)χi(K3) = 12 + 12 +

(
−1−

√
5

2

)2

+

(
−1 +

√
5

2

)2

= 5

⇒ |K3| = |G|/5 = 2

and

|G|/|K4| =
4∑
i=1

χi(K4)χi(K4) = 12 + (−1)2 + 02 + 02 = 2

⇒ |K4| = |G|/2 = 5.

Alternatively, let ki = |Ki| ∈ Z>0. Then 1 + k2 + k3 + k4 = |G| = 10. Moreover,

0 = 〈χ1, χ2〉 = 1 · 12 + k2 · 12 + k3 · 12 + k4 · (1)(−1) = 1 + k2 + k3 − k4
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It follows that k2 + k3 = 4 and k4 = 5. Moreoever,

0 = 〈χ1, χ3〉 = 1 · 1 · 2 + k2 · 1 ·

(
−1 +

√
5

2

)
+ k3 · 1 ·

(
−1−

√
5

2

)
+ k4 · (1)(0)

= 2 + (k2 + k3)

(
−1

2

)
+ (k2 − k3)

(√
5

2

)

= (k2 − k3)

(√
5

2

)
.

So k2 = k3 = 2.

(d) Let ϕ be a representation of G with character χ where χ(g) = χ3(g)2χ4(g)2 for all
g ∈ G, i.e.

{id} K2 K3 K4

χ 16 1 1 0

How does ϕ decompose into irreducible representations of G?

Solution: We calculate the inner products

〈χ, χi〉 = ( 1
10

)

(
1 · χ(id) · χi(id) +

4∑
j=2

|Kj| · χ(Kj) · χi(Kj)

)
= ( 1

10
) (1 · 16 · χi(id) + 2 · 1 · χi(K2) + 2 · 1 · χi(K3) + 5 · 0 · χi(K4))

〈χ, χ1〉 = ( 1
10

)
(
1 · 16 · 1 + 2 · 1 · 1 + 2 · 1 · 1

)
= ( 1

10
)(16 + 2 + 2) = 2

〈χ, χ2〉 = ( 1
10

)
(
1 · 16 · 1 + 2 · 1 · 1 + 2 · 1 · 1

)
= ( 1

10
)(16 + 2 + 2) = 2

〈χ, χ3〉 = ( 1
10

)
(
1 · 16 · 2 + 2 · 1 · (−1+

√
5

2
) + 2 · 1 · (−1−

√
5

2
)
)
= ( 1

10
)(32− 1− 1) = 3

〈χ, χ4〉 = ( 1
10

)
(
1 · 16 · 2 + 2 · 1 · (−1−

√
5

2
) + 2 · 1 · (−1+

√
5

2
)
)
= ( 1

10
)(32− 1− 1) = 3

Therefore χ = 2χ1 + 2χ2 + 3χ3 + 3χ4 and ϕ is a direct sum of two copies of ϕ1 and
ϕ2 and three copies of each of ϕ3 and ϕ4, where ϕi is the irreducible representation
corresponding to χi.
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7. (10 points) Let F be the field Z/2Z. Given a set A, let FA denote the free F -module
on A (i.e. the F -vectorspace with basis A). Consider the maps

0→ F{f123, f124}
d1−→ F{e12, e13, e14, e23, e24, e34}

d2−→ F{v1, v2, v3, v4}
d3−→ 0→ . . .

given by
d1(fijk) = eij + eik + ejk and d2(eij) = vi + vj.

(a) Show that this is a cochain complex C.

Solution: Note that d2 ◦ d1 = 0 to see this, note that

d2(d1(fijk)) = d2(eij + eik + ejk) = d2(eij) + d2(eik + d2(ejk)

= vi + vj + vi + vk + vj + vk = 2(vi + vj + vk) = 0.

Since d3 is the zero map, d3 ◦ d2 = 0 as well.

(b) Find the dimension, as an F -vectorspace, of H0(C), H1(C), and H2(C).

(Hint: first calculate the dimensions of the kernels and images of each di, and
remember the rank-nullity theorem from linear algebra. You can use without proof
that the image of d2 is the (3-dimensional) hyperplane
{a1v1 + a2v2 + a3v3 + a4v4 : a1 + a2 + a3 + a4 = 0}.)

Solution: Since d1(f123)) and d1(f124)) are not scalar multiples of each other, we
see that d1 is injective, meaning that ker(d1) = {0} and dimF (image(d1)) = 2.
By assumption, the image of d2 has dimension 3, and so its kernel has dimension
6− 3 = 3. Finally, since d3 is the zero map, its kernel has full dimension 4.

dimF

(
H0(C)

)
= dimF (ker(d1)) = 0

dimF

(
H1(C)

)
= dimF (ker(d2)/image(d1)) = dimF (ker(d2))− dimF (image(d1)) = 3− 2 = 1

dimF

(
H2(C)

)
= dimF (ker(d3)/image(d2)) = dimF (ker(d3))− dimF (image(d2)) = 4− 3 = 1
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8. (20 points) Consider the Z-module M = Z⊕ Z/2Z⊕ Z/3Z and the sequence of maps

0
φ2−→ Z2 φ1−→ Z3 φ0−→M → 0

where φ2(0) = (0, 0), φ1(a, b) = (0, 2a, 3b) and φ0(x, y, z) = (x, y + 2Z, z + 3Z).

(a) Show that this is a projective resolution of M as a Z-module.

Solution: Note that the modules 0,Z2,Z3 are free and therefore projective Z-modules.
So it suffices to show that the sequence above is exact.

First note that the map φ1 is injective, since φ1(a, b) = (0, 2a, 3b) = (0, 0, 0) implies
that (a, b) = (0, 0), meaning that the above sequence is exact at Z2.

The kernel of φ2 is {(x, y, z) : x = 0, y ∈ 2Z, z ∈ 3Z}, which is exactly the image of
φ1, showing exactness at Z3.

Finally, the map φ0 is surjective, since (x, y + 2Z, z + 3Z) ∈ M is the image of
(x, y, z) ∈ Z3, giving exactness at M .
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(b) Describe the cochain complex and maps obtained from applying HomZ(−,Z/2Z)
to this resolution and use it to calculate ExtnR(M,Z/2Z) for all n ≥ 0.

Solution: Applying HomZ(−,Z/2Z) we get a cochain complex

0 −→ HomZ(M,Z/2Z)
d0−→ HomZ(Z3,Z/2Z)

d1−→ HomZ(Z2,Z/2Z)
d2−→ 0

where di(f) = f ◦ φi.
For n = 0,

Ext0Z(M,Z/2Z) ∼= HomZ(M,Z/2Z)
∼= HomZ(Z,Z/2Z)⊕ HomZ(Z,Z/2Z)⊕ HomZ(Z/3Z,Z/2Z)
∼= (Z/2Z)2

Note that for n ≥ 2, dn is the zero map, so ker(dn+1) = image(dn) = {0}, showing
that

ExtnZ(M,Z/2Z) = ker(dn+1)/image(dn) = 0.

It only remains to find Ext1Z(M,Z/2Z) = ker(d2)/image(d1). Note that
HomZ(Zk,Z/2Z) is isomorphic to (Z/2Z)k. Specifically, let f1, f2, f3 ∈ HomZ(Z3,Z/2Z)
with f1(x, y, z) = x+ 2Z, f2(x, y, z) = y + 2Z, and f3(x, y, z) = z + 2Z. Then

HomZ(Z3,Z/2Z) = {u1f1 + u2f2 + u3f3 : u1, u2, u3 ∈ Z} ∼= (Z/2Z)3

To find their image under d1 note that

f1(φ1(a, b)) = f1(0, 2a, 3b) = 0

f2(φ1(a, b)) = f2(0, 2a, 3b) = 2a = 0

f3(φ1(a, b)) = f3(0, 2a, 3b) = 3b = b

So the image of d1 is Z/2Z · g2 where g2(a, b) = b.

Since d2 is the zero-map, the kernel of d2 is all of

ker(d2) = HomZ(Z2,Z/2Z) = {u1g1 + u2g2 : u1, u2 ∈ Z} ∼= (Z/2Z)2

where g1(a, b) = a+ 2Z. Then

Ext1Z(M,Z/2Z) = ker(d2)/image(d1) ∼= Zg1 ∼= Z/2Z.
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(c) Describe the chain complex and maps obtained from applying Z/2Z ⊗Z − to this
resolution and use them to calculate TorRn (Z/2Z,M) for all n ≥ 0.

(Your final answers to (b) and (c) should be expressions as finite abelian groups,
not involving quotients, “ker”, or “image”)

Solution: Applying Z/2Z⊗Z − we get a chain complex

0
d2−→ Z/2Z⊗Z Z2 d1−→ Z/2Z⊗Z Z3 d0−→ Z/2Z⊗Z M → 0.

where dn = 1⊗ φn. For n = 0,

TorZ0 (Z/2Z,M) ∼= Z/2Z⊗Z M
∼= (Z/2Z⊗Z Z)⊕ (Z/2Z⊗Z Z/2Z)⊕ (Z/2Z⊗Z Z/3Z)
∼= (Z/2Z)⊕ (Z/2Z)⊕ 0
∼= (Z/2Z)2.

Note that for n ≥ 2, dn is the zero map, so ker(dn+1) = image(dn) = {0}, showing
that

TorZn(M,Z/2Z) = ker(1⊗ dn)/image(1⊗ dn+1) = 0.

It remains to find

TorZ1 (M,Z/2Z) = ker(1⊗ d1)/image(1⊗ d2) ∼= ker(1⊗ d1)

Note that every element of Z/2Z ⊗ Zk ∼= (Z/2Z)k can be written as
∑k

i=1 ai ⊗ ei
where ai ∈ Z/2Z and ei is the i coordinate vector. Then

1⊗ d1(1× (a, b)) = 1⊗ (0, 2a, 3b) = 1⊗ (0, 2a, 0) + 1⊗ (0, 0, 3b)

= 2a · 1⊗ (0, 1, 0) + 3b · 1⊗ (0, 0, 1)

= 3b · 1⊗ (0, 0, 1)

This equals zero if and only if b ∈ 2Z. Then

TorZ1 (M,Z/2Z) ∼= {1⊗ (a, 0) = a · 1⊗ (1, 0) : a ∈ Z} ∼= Z/2Z.
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9. (21 points) For each, answer True or False. Do not justify your answer.

(a) For any submodule N of a module M , there exists another submodule N ′ of M so
that M = N ⊕N ′.

(b) The tensor algebra, T (M), of a module M over a commutative ring R is commu-
tative.

(c) Every matrix A ∈Mn(C) is similar to one of the form N +D where N is nilpotent
and D is diagonal.

(d) Every finitely-generated torsion-free module over a PID is free.

(e) The module Q[x]/〈x〉 ⊕ Q[x]/〈x − 1〉 can be generated (as a Q[x]-module) by a
single element.

(f) Every radical ideal in a Noetherian ring is the intersection of finitely many prime
ideals.

(g) Let G be a finite group. Every function G → C that is constant on conjugacy
classes is the character of some representation of G.

Solution:

(a) False.

(b) False.

(c) True.

(d) True.

(e) True.

(f) True.

(g) False.


