MA 721 - Final Exam
 Spring 2020

Time: 3 hours

1. Write out solutions to all questions on your own paper and send me an electronic copy by email or on Moodle by 8am on Wednesday, April 29, 2020.
2. You do not need to rewrite the problem statements, but make sure that all problems are clearly labeled and in order.
3. Unless stated otherwise, justify your answers to receive full credit. Your answers do not have to be in complete sentences, but they do need to be understandable.
4. No outside assistance (from notes, books, internet, people, etc.) is allowed.
5. You will have $\mathbf{3}$ hours to write up solutions, starting when you look at any page after this one. (This does not include scanning/sending time.)
6. Please write out the following on the top of your exam solutions and sign your name after it:

I affirm that I have not used any outside resources while taking this exam and that I have completed the exam in a continuous 3-hour time period.

Question	Points	Score
1	10	
2	5	
3	9	
4	10	
5	10	
6	15	
7	10	
8	20	
9	21	
Total:	110	

1. (10 points) Consider the ring $R=M_{2}(\mathbb{Z})$ of 2×2 matrices over \mathbb{Z}. Let $M=\mathbb{Z}^{2}$.
(a) Show that M is an R-module under the action of left multiplication (i.e. identifying M with the space of 2×1 matrices over \mathbb{Z} and letting $A \cdot v=A v$ for $A \in R, v \in M)$.
(b) Find a nontrivial submodule $0 \subsetneq N \subsetneq M$.
2. (5 points) Find the Jordan canonical form of the linear transformation given by multiplication by $1+x$ on the \mathbb{Q}-vectorspace $\mathbb{Q}[x] /\left\langle x^{2}(x-1)^{2}\right\rangle$. Do not justify your answers.
3. (9 points) Fill in the blank with another commonly used term from algebra (not involving the term "module"). Do not justify your answers.
(a) A module over a field F is the same as a(n) \qquad .
(b) A module over \mathbb{Z} is the same as a(n) \qquad .
(c) An R-submodule of a ring R is the same as a(n) \qquad .
4. (10 points) Let $R=M_{n_{1}}(\mathbb{C}) \times \ldots \times M_{n_{r}}(\mathbb{C})$, where $n_{1}, \ldots, n_{r} \in \mathbb{Z}_{>0}$.

In terms of r, n_{1}, \ldots, n_{r}, describe each of the following. Do not justify your answers.
(a) The dimension of R as a \mathbb{C}-vectorspace.
(b) The dimension of the center of R, as a \mathbb{C}-vectorspace.
(c) The number of primitive central idempotents in R.
(d) The number of distinct (i.e. non-isomorphic) irreducible R-modules.
(e) The dimensions of the distinct irreducible R-modules.
(This should be a list of numbers with length equal to your answer from (d).)
5. (10 points) Let G be a finite group and $\varphi: G \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ a representation of G with character χ. Suppose that $g \in G$ has order 2 . Show that $\chi(g)$ is an integer.
(Hint: what are the possibilities for the minimal polynomial and eigenvalues of $\varphi(g)$?)
6. (15 points) Here is the character table of a mystery finite group G, with conjugacy classes $\{\mathrm{id}\}, K_{2}, K_{3}, K_{4}$:

	$\{\mathrm{id}\}$	K_{2}	K_{3}	K_{4}
χ_{1}	1	1	1	1
χ_{2}	1	1	1	-1
χ_{3}	2	$(-1+\sqrt{5}) / 2$	$(-1-\sqrt{5}) / 2$	0
χ_{4}	2	$(-1-\sqrt{5}) / 2$	$(-1+\sqrt{5}) / 2$	0

Make sure to justify your answers to each of the following:
(a) What is the size of G ?
(b) Is G abelian?
(c) What are the sizes of the conjugacy classes K_{2}, K_{3}, K_{4} ?
(d) Let φ be a representation of G with character χ where $\chi(g)=\chi_{3}(g)^{2} \chi_{4}(g)^{2}$ for all $g \in G$, i.e.

$$
\begin{array}{c|cccc}
& \{\mathrm{id}\} & K_{2} & K_{3} & K_{4} \\
\hline \chi & 16 & 1 & 1 & 0
\end{array}
$$

How does φ decompose into irreducible representations of G ?
7. (10 points) Let F be the field $\mathbb{Z} / 2 \mathbb{Z}$. Given a set A, let $F A$ denote the free F-module on A (i.e. the F-vectorspace with basis A). Consider the maps

$$
0 \rightarrow F\left\{f_{123}, f_{124}\right\} \xrightarrow{d_{1}} F\left\{e_{12}, e_{13}, e_{14}, e_{23}, e_{24}, e_{34}\right\} \xrightarrow{d_{2}} F\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \xrightarrow{d_{3}} 0 \rightarrow \ldots
$$

given by

$$
d_{1}\left(f_{i j k}\right)=e_{i j}+e_{i k}+e_{j k} \quad \text { and } \quad d_{2}\left(e_{i j}\right)=v_{i}+v_{j} .
$$

(a) Show that this is a cochain complex \mathcal{C}.
(b) Find the dimension, as an F-vectorspace, of $H^{0}(\mathcal{C}), H^{1}(\mathcal{C})$, and $H^{2}(\mathcal{C})$.
(Hint: first calculate the dimensions of the kernels and images of each d_{i}, and remember the rank-nullity theorem from linear algebra. You can use without proof that the image of d_{2} is the (3-dimensional) hyperplane
$\left.\left\{a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+a_{4} v_{4}: a_{1}+a_{2}+a_{3}+a_{4}=0\right\}.\right)$
8. (20 points) Consider the \mathbb{Z}-module $M=\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$ and the sequence of maps

$$
0 \xrightarrow{\phi_{2}} \mathbb{Z}^{2} \xrightarrow{\phi_{1}} \mathbb{Z}^{3} \xrightarrow{\phi_{0}} M \rightarrow 0
$$

where $\phi_{2}(0)=(0,0), \phi_{1}(a, b)=(0,2 a, 3 b)$ and $\phi_{0}(x, y, z)=(x, y+2 \mathbb{Z}, z+3 \mathbb{Z})$.
(a) Show that this is a projective resolution of M as a \mathbb{Z}-module.
(b) Describe the cochain complex and maps obtained from applying $\operatorname{Hom}_{\mathbb{Z}}(-, \mathbb{Z} / 2 \mathbb{Z})$ to this resolution and use it to calculate $\operatorname{Ext}_{R}^{n}(M, \mathbb{Z} / 2 \mathbb{Z})$ for all $n \geq 0$.
(c) Describe the chain complex and maps obtained from applying $\mathbb{Z} / 2 \mathbb{Z} \otimes_{\mathbb{Z}}$ - to this resolution and use them to calculate $\operatorname{Tor}_{n}^{R}(\mathbb{Z} / 2 \mathbb{Z}, M)$ for all $n \geq 0$.
(Your final answers to (b) and (c) should be expressions as finite abelian groups, not involving quotients, "ker", or "image")
9. (21 points) For each, answer True or False. Do not justify your answer.
(a) For any submodule N of a module M, there exists another submodule N^{\prime} of M so that $M=N \oplus N^{\prime}$.
(b) The tensor algebra, $\mathcal{T}(M)$, of a module M over a commutative ring R is commutative.
(c) Every matrix $A \in M_{n}(\mathbb{C})$ is similar to one of the form $N+D$ where N is nilpotent and D is diagonal.
(d) Every finitely-generated torsion-free module over a PID is free.
(e) The module $\mathbb{Q}[x] /\langle x\rangle \oplus \mathbb{Q}[x] /\langle x-1\rangle$ can be generated (as a $\mathbb{Q}[x]$-module) by a single element.
(f) Every radical ideal in a Noetherian ring is the intersection of finitely many prime ideals.
(g) Let G be a finite group. Every function $G \rightarrow \mathbb{C}$ that is constant on conjugacy classes is the character of some representation of G.

