Math 721 - Worksheet 01/14/20

(10:15am) Form into 4 groups of size 3-4.
(10:17am) As a group, read through the definition of tensor product and try Problem 0.
(10:30am) Discuss as a class.
(10:35am) Students in Group X work on Problem X.
If it's too hard, try the warm-up. If you finish, try another problem.
(11:05am) Groups present their findings. (~ 5 minutes per group)

Let R be a commutative ring with $1 \neq 0$ and suppose M and N are both (left) R-modules.
Definition. The tensor product of M and N over $R, M \otimes_{R} N$, is the set of formal sums

$$
M \otimes_{R} N=\left\{\sum_{i=1}^{k} m_{i} \otimes n_{i}: k \in \mathbb{Z}_{\geq 0}, m_{i} \in M, n_{i} \in N\right\}
$$

subject to the relations

$$
\begin{aligned}
\left(m_{1}+m_{2}\right) \otimes n & =\left(m_{1} \otimes n\right)+\left(m_{2} \otimes n\right), \\
m \otimes\left(n_{1}+n_{2}\right) & =\left(m \otimes n_{1}\right)+\left(m \otimes n_{2}\right), \text { and } \\
r m \otimes n & =m \otimes r n
\end{aligned}
$$

for all $m_{1}, m_{2}, m \in M, n_{1}, n_{2}, n \in N$ and $r \in R$. This is an R-module under the action

$$
r\left(\sum_{i=1}^{k} m_{i} \otimes n_{i}\right)=\sum_{i=1}^{k} r m_{i} \otimes n_{i}=\sum_{i=1}^{k} m_{i} \otimes r n_{i}
$$

Example. Consider $R=\mathbb{R}$ and $M=N=\mathbb{R}^{2}=\left\{a e_{1}+b e_{2}: a, b \in \mathbb{R}\right\}$. The tensor product $\mathbb{R}^{2} \otimes_{\mathbb{R}} \mathbb{R}^{2}$ is a 4-dimensional vectorspace with basis

$$
\left\{e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{2} \otimes e_{1}, e_{2} \otimes e_{2}\right\}
$$

Problem 0. Write the element $\left(e_{1}+e_{2}\right) \otimes\left(e_{1}+2 e_{2}\right)+\left(e_{1}-e_{2}\right) \otimes\left(3 e_{1}\right)$ of $\mathbb{R}^{2} \otimes_{\mathbb{R}} \mathbb{R}^{2}$ as an \mathbb{R}-linear combination of the basis above.

Show each of the following R-module isomorphisms:

> Warm-up

Problem 1. $M \otimes_{R} R \cong M$
$R \otimes_{R} R \cong R$
Problem 2. $R^{m} \otimes_{R} R^{n} \cong R^{m n}$
$m=2$ and $n=2$
Problem 3. $\mathbb{Q}^{2} \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R}^{2}$
$\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R}$
Problem 4. $\mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z} / d \mathbb{Z}$ where $d=\operatorname{gcd}(m, n)$ $m=2$ and $n=2,3$

