Math 721 - Worksheet 04/21/20

Lets find irreducible characters of the symmetric group S_{4}.
Problem 0. Find all the conjugacy classes of S_{4} and their sizes.

Problem 1 (Numerology).
(a) What are all of the 1-dimensional complex representations of S_{4} ?
(b) What are the dimensions of each of the irreducible representations of S_{4} ?

Problem 2. Consider the permutation representation $\pi \mapsto P_{\pi} \in \mathrm{GL}_{4}(\mathbb{C})$ of S_{4}.
(a) What is the character of this representation?
(b) Note that the subspace $\mathbb{C}\{(1,1,1,1)\}$ is fixed by every group element. What is the character of the representation restricted to this subspace?
(c) What is the character χ of the representation of S_{4} induced by restricting the permutation representation to the subspace $\left\{x \in \mathbb{C}^{4}: \sum_{i=1}^{4} x_{i}=0\right\}$?
(d) Find $\langle\chi, \chi\rangle$ to verify that χ is irreducible.

Problem 3. Let V denote the normal subgroup $\{\mathrm{id},(12)(34),(13)(24),(14)(23)\}$ of S_{4}.
(a) Show that the quotient group S_{4} / V is isomorphic to S_{3}.

Hint: consider the action of S_{4} on $V \backslash\{\mathrm{id}\}=\{(12)(34),(13)(24),(14)(23)\}$ given by conjugation.
(b) Find the character χ of S_{4} induced by the map $S_{4} \rightarrow S_{4} / V \cong S_{3} \xrightarrow{\varphi} \mathrm{GL}_{2}(\mathbb{C})$ where φ is the irreducible 2-dimensional representation of S_{3}.
(c) Find $\langle\chi, \chi\rangle$ to verify that χ is irreducible.

Solutions

Problem 0 Solution. Recall that the conjugacy classes in S_{4} are determined by their cycle structure. From this we see that there are five:

representative element:	id	(12)	(123)	(1234)	$(12)(34)$
size:	1	6	8	6	3

Problem 1 Solution. a) There are two 1-dimensional complex representations of S_{4}, the trivial representation and the sign representation. To see this, let $\varphi: S_{4} \rightarrow \mathrm{GL}_{1}(\mathbb{C})=\mathbb{C}^{*}$ be a group homomorphism. Then $\varphi(\mathrm{id})=1$ and $1=\varphi(\mathrm{id})=\varphi((12)(12))=\varphi(12)^{2}$, so $\varphi((12)) \in\{ \pm 1\}$. Moreover, since φ is a group homomorphism and every element of S_{4} is generated by transpositions, the value $\varphi((12))$ determines the value of φ on all elements of S_{4}.
b) Since there are five conjugacy classes in S_{4}, there are five irreducible representations. If they have dimensions $n_{1} \leq n_{2} \leq n_{3} \leq n_{4} \leq n_{5}$, then by part (a), $n_{1}=n_{2}=1$ and $2 \leq n_{3}$. We know that $\sum_{j=1}^{5} n_{j}^{2}=\left|S_{4}\right|=24$ and so $n_{3}^{2}+n_{4}^{2}+n_{5}^{2}=22$. From this we see that $n_{3}=2$ and $n_{4}=n_{5}=3$.

Problem 2 Solution. a) Note that the character of this representation sends $\pi \in S_{4}$ to $\operatorname{trace}\left(P_{\pi}\right)$, which is the number of fixed points of π. Explicitly,

$$
\begin{array}{cccccc}
\text { conj. class: } & \text { id } & (12) & (123) & (1234) & (12)(34) \\
\text { character: } & 4 & 2 & 1 & 0 & 0
\end{array}
$$

b) Let $v=(1,1,1,1)^{T}$. Since $P_{\pi} v=v$ for all $\pi \in S_{4}$, we see that P_{π} acts as the identity on this 1-dimensional subspace. The corresponding character is the trivial character.
c) Note that \mathbb{C}^{4} as a $\mathbb{C} S_{4}$ module under the permutation representation is a direct sum of the submodules $\mathbb{C} v$ and $v^{\perp}=\left\{x \in \mathbb{C}^{4}: \sum_{i=1}^{4} x_{i}=0\right\}$. Therefore the character $\chi_{\text {perm }}$ of the permutation representation is the sum of the characters $\chi_{\text {trivial }}$ and χ for the restrictions to these submodules. Therefore $\chi=\chi_{\text {perm }}-\chi_{\text {trivial }}$, giving

$$
\chi(\pi)=\chi_{\text {perm }}(\pi)-\chi_{\text {trivial }}(\pi)=\#\{\text { fixed points of } \pi\}-1
$$

Explicitly, it takes values

$$
\begin{array}{rccccc}
\text { conj. class: } & \text { id } & (12) & (123) & (1234) & (12)(34) \\
\chi: & 3 & 1 & 0 & -1 & -1
\end{array}
$$

d) Note that $\langle\chi, \chi\rangle=\frac{1}{24} \sum_{i=1}^{5}\left|K_{i}\right| \chi\left(\pi_{i}\right) \overline{\chi\left(\pi_{i}\right)}$ where $\pi_{i} \in K_{i}$. From this we calculate

$$
\begin{aligned}
\langle\chi, \chi\rangle & =\frac{1}{24}\left(1 \cdot \chi(\mathrm{id})^{2}+6 \cdot \chi((12))^{2}+8 \cdot \chi((123))^{2}+6 \cdot \chi((1234))^{2}+3 \cdot \chi((12)(34))^{2}\right) \\
& =\frac{1}{24}\left(1 \cdot 3^{2}+6 \cdot 1^{2}+8 \cdot 0+6 \cdot(-1)^{2}+3 \cdot(-1)^{2}\right) \\
& =\frac{1}{24}(9+6+6+3)=1
\end{aligned}
$$

Since $\langle\chi, \chi\rangle=1$, the character χ is irreducible.

Problem 3 Solution. a) Since $V \backslash\{i d\}$ is conjugacy class, S_{4} naturally acts on it by conjugation. It is not hard to check that the kernel of this action (i.e. the set of group elements fixing each of $V \backslash\{\mathrm{id}\})$ is the normal subgroup V. This gives an injective group homomorphism $S_{4} / V \rightarrow S_{V \backslash\{i d\}} \cong S_{3}$. Since these groups both have size $6=24 / 4$, it must be an isomorphism.
b) Recall that the 2-dimensional representation ψ of S_{3} is given by $\psi(\mathrm{id})=2, \psi((12))=0$, and $\psi((123))=-1$. For a representative of each conjugacy class in S_{4}, we need to calculate its image in S_{3}.

Note that id and (12)(34) belong to V, and so are sent to the identity element in $S_{4} / V \cong$ S_{3}, giving $\chi(\mathrm{id})=\chi((12)(34))=\psi(\mathrm{id})=2$.

We see that (12) acts on the set $\{(12)(34),(13)(24),(14)(23)\}$ by fixing the first element and switching the second and third. Therefore $\chi((12))=\psi((23))=0$.

Similarly, the 3-cycle (123) acts on this set by $(12)(34) \mapsto(23)(14)=(14)(23), \quad(13)(24) \mapsto(21)(34)=(12)(34), \quad(14)(23) \mapsto(24)(31)=(13)(24)$, giving $\chi((123))=\psi((132))=-1$.

Finally, we note that the 4-cycle (1234) acts on $V \backslash\{i d\}$ by $(12)(34) \mapsto(23)(41)=(14)(23), \quad(13)(24) \mapsto(24)(13)=(13)(24), \quad(14)(23) \mapsto(21)(34)=(12)(34)$, giving $\chi((1234))=\psi((13))=0$.

All together this gives:

$$
\begin{array}{rccccc}
\text { conj. class: } & \text { id } & (12) & (123) & (1234) & (12)(34) \\
\chi: & 2 & 0 & -1 & 0 & 2
\end{array}
$$

c) Note that $\langle\chi, \chi\rangle=\frac{1}{24} \sum_{i=1}^{5}\left|K_{i}\right| \chi\left(\pi_{i}\right) \overline{\chi\left(\pi_{i}\right)}$ where $\pi_{i} \in K_{i}$. From this we calculate

$$
\begin{aligned}
\langle\chi, \chi\rangle & =\frac{1}{24}\left(1 \cdot \chi(\mathrm{id})^{2}+6 \cdot \chi((12))^{2}+8 \cdot \chi((123))^{2}+6 \cdot \chi((1234))^{2}+3 \cdot \chi((12)(34))^{2}\right) \\
& =\frac{1}{24}\left(1 \cdot 2^{2}+6 \cdot 0^{2}+8 \cdot(-1)^{2}+6 \cdot 0^{2}+3 \cdot 2^{2}\right) \\
& =\frac{1}{24}(4+8+12)=1
\end{aligned}
$$

Since $\langle\chi, \chi\rangle=1$, the character χ is irreducible.

