Math 721 - Worksheet 02/20/2020

Problem 1. Consider the matrix

$$
A=\left(\begin{array}{cccc}
0 & 0 & 0 & -4 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

(a) Find a polynomial $a(x) \in \mathbb{Q}[x]$ for which A is the companion matrix.
(b) Factor $a(x)$ over $\overline{\mathbb{Q}}[x]$
(c) Find the Jordan canonical form J of A.
(d) Find an explicit matrix P for which $J=P^{-1} A P$.

Problem 2. Consider the matrix

$$
J=\left(\begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

(a) Find the rational canonical form A of J.
(b) Find an explicit matrix P for which $A=P^{-1} J P$.
(c) What are the minimal and characteristic polynomials of J ?

Problem 3. Suppose that A is a 6×6 matrix over \mathbb{Q} fo which $A^{3}=0$ but $A^{2} \neq 0$.
(a) What are the possible Jordan canonical forms of A (over $\overline{\mathbb{Q}}$)?
(b) What are the minimal and characteristic polynomials these matrices?

Problem 4. Suppose that M an $n \times n$ is a block diagonal matrix

$$
M=\left(\begin{array}{ccccc}
A_{1} & 0 & 0 & \ldots & 0 \\
0 & A_{2} & 0 & \ldots & 0 \\
0 & 0 & A_{3} & & 0 \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \ldots & A_{k}
\end{array}\right)
$$

where for each i, A_{i} is a $d_{i} \times d_{i}$ matrix where $n=\sum_{i=1}^{k} d_{i}$.
(a) What are the minimal and characteristic polynomials of M in terms of the minimal and characteristic polynomials of A_{1}, \ldots, A_{k} ?
(b) How does the Jordan canonical form of M relate to the Jordan canonical forms of A_{1}, \ldots, A_{k} ?

Answers (without explanation)

*Note, in the rational canonical form, the order of the basis of $\overline{\mathbb{Q}}[x] /\left\langle(x-\lambda)^{k}\right\rangle$ is taken to be $\left\{(x-\lambda)^{k-1}, \ldots, x-\lambda, 1\right\}$ (not the reverse, which I may have incorrectly used in class).

Problem 1 Solutions

(a) $a(x)=x^{4}-4 x^{2}+4$ for which A is the companion matrix.
(b) $a(x)=\left(x^{2}-2\right)^{2}=(x-\sqrt{2})^{2} \cdot(x+\sqrt{2})^{2}$.
(c) $\left(\begin{array}{cccc}\sqrt{2} & 1 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 \\ 0 & 0 & -\sqrt{2} & 1 \\ 0 & 0 & 0 & -\sqrt{2}\end{array}\right)$
(d) $P=Q^{-1}$ where $Q=\left(\begin{array}{cccc}0 & 1 & 2 \sqrt{2} & 6 \\ 1 & \sqrt{2} & 2 & 2 \sqrt{2} \\ 0 & 1 & -2 \sqrt{2} & 6 \\ 1 & -\sqrt{2} & 2 & -2 \sqrt{2}\end{array}\right)$

This is the change of basis matrix from $\overline{\mathbb{Q}}$-basis $\left\{1, x, x^{2}, x^{3}\right\}$ of $\overline{\mathbb{Q}}[x] /\langle a(x)\rangle$ to the $\overline{\mathbb{Q}}$-basis $\{(x-\sqrt{2}, 0),(1,0),(0, x+\sqrt{2}),(0,1)\}$ of $\overline{\mathbb{Q}}[x] /(x-\sqrt{2})^{2} \oplus \overline{\mathbb{Q}}[x] /(x+\sqrt{2})^{2}$.

Problem 2 Solutions

(a) $A=\left(\begin{array}{ccccccc}0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 0 & 0 & 1 & 3\end{array}\right)$
(b) $P=\left(\begin{array}{lllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 3 & 6 \\ 0 & 0 & 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0\end{array}\right)$
(c) minimal polynomial $=x^{2}(x-1)^{3}$
characteristic polynomial $=x^{2}(x-1)^{5}$

Problem 3 Solutions

(a) $\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right),\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$, and $\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
(b) For each, the minimal polynomial is x^{3} and the characteristic polynomial is x^{6}.

Problem 4 Solutions

(a) The minimal polynomial of M is the least common multiple of the minimal polynomials of A_{1}, \ldots, A_{k}.

The characteristic polynomial of M is the product of the characteristic polynomials of A_{1}, \ldots, A_{k}.
(b) The Jordan canonical form of M is a block diagonal matrix consisting of the Jordan canonical forms of A_{1}, \ldots, A_{k}.

