
Math 721 – Homework 9 – Solutions

Problem 1 (DF 17.1.21). Let R = k[x, y] where k is a field and let I denote the maximal
ideal 〈x, y〉 in R.

(a) Show that the following is a free resolution of k as an R-module:

0→ R
α−→ R2 β−→ R

π−→ k → 0,

where

α(f) = (yf,−xf), β(f, g) = xf + yg, and π(f) = f + I ∈ R/I ∼= k.

(b) Use the resolution in (a) to show that TorR2 (k, k) ∼= k.

(c) Prove that TorR1 (k, I) ∼= k. (Hint: Use the long exact sequence corresponding to the
short exact sequence 0→ I → R→ k → 0 and (b).)

(d) Conclude that the torsion-free R module I is not flat.

Proof of (a). Since neither x nor y is a zero-divisor in k[x, y], we see that ker(α) = {0},
meaning that α is injective.

Note that x(yf)+y(−xf) = 0, showing that image(α) ⊆ ker(β). For the reverse inclusion,
suppose that (f, g) ∈ ker(β). Then xf = −yg. Since x, y are relatively prime, we see that x
must divide g and y must divide f . Moreover, f

y
= −g

x
. Call this polynomial h = f

y
. Then

α(h) = (y · h,−x · h) = (y · f
y
,−x · −g

x
) = (f, g) ∈ image(α). Therefore image(α) = ker(β).

The image of β is exactly I = 〈x, y〉 = {xf + yg : f, g ∈ R}, which is the kernel of the
map π : R→ R/I.

Finally, the projection π : R→ R/I is surjective. An element r+ I ∈ R/I is the image of
r ∈ R. �

Proof of (b). The exact sequence in (a) is a free-resolution of k ∼= R/I as an R-module with
P2 = R, P1 = R2, P0 = R, and α = d2, β = d1. To calculate, TorR2 (k, k), we tensor this
sequence with k, giving

0→ k ⊗R R
1⊗α−→ k ⊗R R2 1⊗β−→ k ⊗R R

1⊗π−→ k ⊗R k → 0,

By definition, TorR2 (k, k) = ker(1⊗ α)/ image(1⊗ 0) = ker(1⊗ α).
Recall that k ⊗R R ∼= k and that every element can be written as a⊗ 1 for some a ∈ k.

(1⊗ α)(a⊗ 1) = a⊗ α(1) = a⊗ (y,−x) = ay ⊗ (1, 0)− ax⊗ (0, 1) = (0, 0)

The last equation follows from the fact that multiplication of any element a ∈ k ∼= R/I by
x or y gives zero. Since M ⊗R R ∼= M for any R-module M , we find that

TorR2 (k, k) = ker(1⊗ α) = k ⊗R R ∼= k.

�

Proof of (c). Tensoring the short exact exact sequence 0→ I → R → k → 0 with k ∼= R/I
gives a long exact sequence

· · · → TorR2 (k,R)→ TorR2 (k, k)→ TorR1 (k, I)→ TorR1 (k,R)→ · · · .



Since R is a free R-module, it is flat, implying that TorR1 (k,R) = TorR2 (k,R) = 0 (see DF
Prop. 17.1.16). Therefore the sequence 0→ TorR2 (k, k)→ TorR1 (k, I)→ 0 is exact, giving

TorR1 (k, I) ∼= TorR2 (k, k) ∼= k.

�

Proof of (d). By part (c), TorR1 (k, I) ∼= k 6= 0. By DF Prop. 17.1.16, it follows that I is not
a flat R-module. �

Problem 2 (DF 17.2.9 +). Let G be an infinite cyclic group with generator σ.

(a) Show that the map aug : ZG→ Z defined by

aug

(∑
i∈Z

aiσ
i

)
=
∑
i∈Z

ai

is a (ZG)-module homomorphism, taking the trivial action of G on Z.

(b) Prove that multiplication by σ − 1 in ZG gives the following free resolution of Z as
a (ZG)-module:

0→ ZG σ−1−→ ZG aug−→ Z→ 0.

(c) Let A be a G-module. Show that H0(G,A) ∼= AG, H1(G,A) ∼= A/(σ − 1)A, and
Hn(G,A) = 0 for n ≥ 2.

(d) Show that H1(G,ZG) ∼= Z.
(This shows that free modules can have nontrivial cohomology groups.)

Proof of (a). To show that aug is a ZG-module homomorphism, it suffices to show that aug
is Z linear and g · aug(x) = aug(g · x) for all x ∈ ZG.

Let
∑

i∈Z aiσ
i,
∑

j∈Z bjσ
j ∈ ZG. (By definition, only finitely many ai and bj are non-zero.)

Let α, β ∈ Z. Then

aug

(
α ·
∑
i∈Z

aiσ
i + β ·

∑
j∈Z

bjσ
j

)
= aug

(∑
i∈Z

(α · ai + β · bi)σi
)

=
∑
i∈Z

(α · ai + β · bi)

= α · aug

(∑
i∈Z

aiσ
i

)
+ β · aug

(∑
j∈Z

bjσ
j

)
.

Similarly, for any σk ∈ G,

aug

(
σk ·

∑
i∈Z

aiσ
i

)
= aug

(∑
i∈Z

aiσ
i+k

)
=
∑
i∈Z

ai = σk ·

(∑
i∈Z

ai

)
= σk · aug

(∑
i∈Z

aiσ
i

)
.

�



Proof of (b). Let x =
∑

i∈Z aiσ
i ∈ ZG. Suppose that x ∈ ker(σ − 1). Then

0 = (σ − 1) ·
∑
i∈Z

aiσ
i =

∑
i∈Z

ai(σ
i+1 − σi) =

∑
i∈Z

(ai−1 − ai)σi.

Therefore ai−1 = ai for all i. However ai is non-zero for only finitely-many i. Since all the
ai’s must be equal, this implies that ai = 0 for all i and x = 0. Therefore multiplication by
σ − 1 defines an injective map on ZG.

Note that the image of σ − 1 belongs to the kernel of aug. To see this, note that

aug

(
(σ − 1) ·

∑
i∈Z

aiσ
i

)
= aug

(∑
i∈Z

(ai−1 − ai)σi
)

=
∑
i∈Z

(ai−1 − ai) = 0.

For the reverse inclusion, suppose that y =
∑

j∈Z bjσ
j ∈ ZG belongs to the kernel of aug,

i.e.
∑

j∈Z bj. For y 6= 0, let M = max{j : bj 6= 0} and m = min{j : bj 6= 0}. We will show

that y ∈ image(σ − 1) by induction on M −m.
If M − m = 0, then y = bmσ

m with bm 6= 0 and y 6∈ ker(aug). If M − m = 1, then
y = bmσ

m + bm+1σ
m+1 and bm + bm+1 = 0. Then y = (σ − 1)bm+1σ

m ∈ image(σ − 1).
Now suppose M − m ≥ 2 and consider the element z = y − bMσ

M−1(σ − 1). Then
aug(z) = aug(y) + bM · aug(σ − 1) = 0 + 0 = 0, so z ∈ ker(aug). Moreover, z =

∑
j∈Z cjσj

where cj = bj for all j 6= M − 1,M and cM = 0. Therefore

max{j : cj 6= 0} −min{j : cj 6= 0} = max{j : cj 6= 0} −m < M −m.
By induction z ∈ image(σ − 1). Then y = z + bMσ

M−1(σ − 1) ∈ image(σ − 1).
Finally, for all a ∈ Z, aσ ∈ ZG and aug(aσ) = a, so the map aug is surjective. �

Proof of (c). Let A be a G-module. Recall that one definition of the group Hn(G,A) is
ExtnZG(Z, A). To find this, we use the free resolution of Z as a ZG-module given in (b), take
HomZG(−, A) (and drop the “Z” term) to get the cochain complex:

0→ HomZG(ZG,A)
σ−1−→ HomZG(ZG,A)

d2−→ 0.

Noting that HomZG(ZG,A) ∼= A gives

0→ A
σ−1−→ A

d2−→ 0.

Then H0(G,A) = ker(σ − 1) ∼= {a ∈ A : (σ − 1)a = 0} = {a ∈ A : σa = a} = AG. We
see that H1(G,A) = ker(d2)/ image(σ − 1) = A/(σ − 1)A. Finally for n ≥ 2, Hn(G,A) =
ker(dn+1)/ image(dn) = 0. �

Proof of (d). By part (c), H1(G,ZG) ∼= ZG/(σ−)ZG. By part (b), (σ − 1)ZG equals the
kernel of the ZG-module homomorphism aug. Together with the first isomorphism theorem,
this gives

H1(G,ZG) ∼= ZG/(σ − 1)ZG = ZG/ ker(aug) ∼= image(aug) = Z.
�


