Math 721 — Homework 9 — Solutions

Problem 1 (DF 17.1.21). Let R = k[x,y| where k is a field and let I denote the maximal
ideal (z,y) in R.

(a) Show that the following is a free resolution of k as an R-module:
05R-SR SR k0,
where

alf) = wf,—zf), B(f.9)=xf+yg, and =(f)=f+1€cR/I=k
(b) Use the resolution in (a) to show that Torf(k, k) = k.

(¢) Prove that Torf(k,I) = k. (Hint: Use the long exact sequence corresponding to the
short exact sequence 0 - I — R — k — 0 and (b).)

(d) Conclude that the torsion-free R module [ is not flat.

Proof of (a). Since neither x nor y is a zero-divisor in k[z,y], we see that ker(a) = {0},
meaning that « is injective.

Note that z(yf)+y(—zf) = 0, showing that image(a) C ker(3). For the reverse inclusion,
suppose that (f, g) € ker(5). Then xf = —yg. Since x,y are relatively prime, we see that z
must divide g and y must divide f. Moreover, 5 = —£. Call this polynomial h = % Then
ah)=(y-h,—x-h)=(y- 5, —z - —2) = (f,g) € image(a). Therefore image(a) = ker(3).

The image of § is exactly I = (x,y) = {zf +yg : f,g € R}, which is the kernel of the
map 7: R — R/I.

Finally, the projection 7 : R — R/I is surjective. An element r+ I € R/I is the image of
r € R. 0J

Proof of (b). The exact sequence in (a) is a free-resolution of k = R/I as an R-module with
P,=R, P, =R? Py=R, and a = dy, § = dy. To calculate, Tor}(k, k), we tensor this
sequence with k, giving

05 kRp R kopR2 B bop RS kogk — 0,

By definition, Tor(k, k) = ker(1 ® o)/ image(1 ® 0) = ker(1 ® a).
Recall that £k ®r R = k and that every element can be written as a ® 1 for some a € k.

lea)(e®l)=a®a(l) =a® (y,—z) =ay ® (1,0) — az ® (0,1) = (0,0)

The last equation follows from the fact that multiplication of any element a € k = R/I by
x or y gives zero. Since M ®r R = M for any R-module M, we find that

Torl(k, k) =ker(l1®a) =k ®r R k.
O

Proof of (c). Tensoring the short exact exact sequence 0 - I — R — k — 0 with k = R/I
gives a long exact sequence

.o — Tord(k, R) — Tor¥(k, k) — Torf(k,I) — Torf(k,R) — - -- .



Since R is a free R-module, it is flat, implying that Torf(k, R) = Tor¥(k, R) = 0 (see DF
Prop. 17.1.16). Therefore the sequence 0 — TorZ(k, k) — Torf(k, I) — 0 is exact, giving

Torf(k, I) = Tor (k, k) = k.
O

Proof of (d). By part (c), Torf(k,I) = k # 0. By DF Prop. 17.1.16, it follows that I is not
a flat R-module. O

Problem 2 (DF 17.2.9 +). Let G be an infinite cyclic group with generator o.
(a) Show that the map aug : ZG — Z defined by

g (z ) Y

i€z i€z
is a (ZG)-module homomorphism, taking the trivial action of G on Z.

(b) Prove that multiplication by ¢ — 1 in ZG gives the following free resolution of Z as
a (ZG)-module:

0—ZG S 2G ™8 7 0.
(c) Let A be a G-module. Show that HY(G, A) = AY HY(G,A) = A/(c — 1)A, and
H™"(G,A) =0 forn > 2.
(d) Show that HY(G,ZG) = Z.

(This shows that free modules can have nontrivial cohomology groups.)

Proof of (a). To show that aug is a ZG-module homomorphism, it suffices to show that aug
is Z linear and g - aug(x) = aug(g - z) for all x € ZG.

Let 3 ey ai0’, Y ey bjo? € ZG. (By definition, only finitely many a; and b; are non-zero.)
Let a, 8 € Z. Then

aug (a . Zaioi + 05 ij0j> = aug <Z(a ca; + - bi)ai>

i€Z jJEL i€Z
=> (a-a;+p-b)
i€Z
= - aug (Z ai0i> + [ - aug (Z bjaj) .
i€Z JEL

Similarly, for any o* € G,

g <ak . ZW) g (Z a) s (Z ) -~ (Z a> |

1EL 1€Z €7 €7 €7

O



Proof of (b). Let x = ",., a;0" € ZG. Suppose that x € ker(c — 1). Then

0=(c—1)- Zaiai = Z a;i(c™ — ') = Z(ai—l — a;)o’.
i€Z i€Z i€Z
Therefore a;_1 = a; for all i. However a; is non-zero for only finitely-many ¢. Since all the
a;’s must be equal, this implies that a; = 0 for all ¢ and z = 0. Therefore multiplication by
o — 1 defines an injective map on ZG.
Note that the image of 0 — 1 belongs to the kernel of aug. To see this, note that

aug ((a -1)- Zam’) = aug (Z(ail — ai)ai> = Z(ai,l —a;)=0.
i€Z i€z i€z

For the reverse inclusion, suppose that y = > ez bjo? € ZG belongs to the kernel of aug,
ie. Y icpbj. Fory #0, let M = max{j:b; # 0} and m = min{j : b; # 0}. We will show
that y € image(o — 1) by induction on M — m.

If M —m = 0, then y = b,,0™ with b,, # 0 and y ¢ ker(aug). If M —m = 1, then
Y = 0po™ + by10™ and by, + byyr = 0. Then y = (00 — 1)by10™ € image(o — 1).

Now suppose M — m > 2 and consider the element z = y — by;0™ (o — 1). Then
aug(z) = aug(y) + by - aug(c —1) =0+ 0 = 0, so z € ker(aug). Moreover, z = ., ¢;0,
where ¢; = b; for all j # M — 1, M and ¢y = 0. Therefore

max{j:¢; #0} —min{j : ¢; #0} =max{j:¢; #0} —m < M —m.
By induction z € image(o — 1). Then y = 2 + byyo™ (o — 1) € image(o — 1).

Finally, for all a € Z, ao € ZG and aug(ac) = a, so the map aug is surjective. O
Proof of (c). Let A be a G-module. Recall that one definition of the group H"(G, A) is
Exty(Z, A). To find this, we use the free resolution of Z as a ZG-module given in (b), take
Homyg(—, A) (and drop the “Z” term) to get the cochain complex:

JEZ

0 — Homze(ZG, A) 2= Homyg(ZG, A) -2 0.
Noting that Homzg(ZG, A) = A gives

0— AT A2

Then H(G,A) =ker(c —1) 2 {a€ A: (6 —1)a=0}={a € A:0a=a} =A% We
see that H'(G, A) = ker(dy)/image(oc — 1) = A/(oc — 1)A. Finally for n > 2, H"(G, A) =
ker(d,,+1)/image(d,) = 0. O
Proof of (d). By part (c¢), H'(G,ZG) = ZG/(c—)ZG. By part (b), (¢ — 1)ZG equals the
kernel of the ZG-module homomorphism aug. Together with the first isomorphism theorem,
this gives

HY(G,ZG) = 7ZG/(oc —1)ZG = ZG/ker(aug) = image(aug) = Z.



