Math 721 - Homework 9 - Solutions

Problem 1 (DF 17.1.21). Let $R=k[x, y]$ where k is a field and let I denote the maximal ideal $\langle x, y\rangle$ in R.
(a) Show that the following is a free resolution of k as an R-module:

$$
0 \rightarrow R \xrightarrow{\alpha} R^{2} \xrightarrow{\beta} R \xrightarrow{\pi} k \rightarrow 0,
$$

where

$$
\alpha(f)=(y f,-x f), \quad \beta(f, g)=x f+y g, \quad \text { and } \quad \pi(f)=f+I \in R / I \cong k
$$

(b) Use the resolution in (a) to show that $\operatorname{Tor}_{2}^{R}(k, k) \cong k$.
(c) Prove that $\operatorname{Tor}_{1}^{R}(k, I) \cong k$. (Hint: Use the long exact sequence corresponding to the short exact sequence $0 \rightarrow I \rightarrow R \rightarrow k \rightarrow 0$ and (b).)
(d) Conclude that the torsion-free R module I is not flat.

Proof of (a). Since neither x nor y is a zero-divisor in $k[x, y]$, we see that $\operatorname{ker}(\alpha)=\{0\}$, meaning that α is injective.

Note that $x(y f)+y(-x f)=0$, showing that image $(\alpha) \subseteq \operatorname{ker}(\beta)$. For the reverse inclusion, suppose that $(f, g) \in \operatorname{ker}(\beta)$. Then $x f=-y g$. Since x, y are relatively prime, we see that x must divide g and y must divide f. Moreover, $\frac{f}{y}=\frac{-g}{x}$. Call this polynomial $h=\frac{f}{y}$. Then $\alpha(h)=(y \cdot h,-x \cdot h)=\left(y \cdot \frac{f}{y},-x \cdot \frac{-g}{x}\right)=(f, g) \in \operatorname{image}(\alpha)$. Therefore image $(\alpha)=\operatorname{ker}(\beta)$.

The image of β is exactly $I=\langle x, y\rangle=\{x f+y g: f, g \in R\}$, which is the kernel of the map $\pi: R \rightarrow R / I$.

Finally, the projection $\pi: R \rightarrow R / I$ is surjective. An element $r+I \in R / I$ is the image of $r \in R$.

Proof of (b). The exact sequence in (a) is a free-resolution of $k \cong R / I$ as an R-module with $P_{2}=R, P_{1}=R^{2}, P_{0}=R$, and $\alpha=d_{2}, \beta=d_{1}$. To calculate, $\operatorname{Tor}_{2}^{R}(k, k)$, we tensor this sequence with k, giving

$$
0 \rightarrow k \otimes_{R} R \xrightarrow{1 \otimes \alpha} k \otimes_{R} R^{2} \xrightarrow{1 \otimes \beta} k \otimes_{R} R \xrightarrow{1 \otimes \pi} k \otimes_{R} k \rightarrow 0,
$$

By definition, $\operatorname{Tor}_{2}^{R}(k, k)=\operatorname{ker}(1 \otimes \alpha) / \operatorname{image}(1 \otimes 0)=\operatorname{ker}(1 \otimes \alpha)$.
Recall that $k \otimes_{R} R \cong k$ and that every element can be written as $a \otimes 1$ for some $a \in k$.

$$
(1 \otimes \alpha)(a \otimes 1)=a \otimes \alpha(1)=a \otimes(y,-x)=a y \otimes(1,0)-a x \otimes(0,1)=(0,0)
$$

The last equation follows from the fact that multiplication of any element $a \in k \cong R / I$ by x or y gives zero. Since $M \otimes_{R} R \cong M$ for any R-module M, we find that

$$
\operatorname{Tor}_{2}^{R}(k, k)=\operatorname{ker}(1 \otimes \alpha)=k \otimes_{R} R \cong k
$$

Proof of (c). Tensoring the short exact exact sequence $0 \rightarrow I \rightarrow R \rightarrow k \rightarrow 0$ with $k \cong R / I$ gives a long exact sequence

$$
\cdots \rightarrow \operatorname{Tor}_{2}^{R}(k, R) \rightarrow \operatorname{Tor}_{2}^{R}(k, k) \rightarrow \operatorname{Tor}_{1}^{R}(k, I) \rightarrow \operatorname{Tor}_{1}^{R}(k, R) \rightarrow \cdots
$$

Since R is a free R-module, it is flat, implying that $\operatorname{Tor}_{1}^{R}(k, R)=\operatorname{Tor}_{2}^{R}(k, R)=0$ (see DF Prop. 17.1.16). Therefore the sequence $0 \rightarrow \operatorname{Tor}_{2}^{R}(k, k) \rightarrow \operatorname{Tor}_{1}^{R}(k, I) \rightarrow 0$ is exact, giving

$$
\operatorname{Tor}_{1}^{R}(k, I) \cong \operatorname{Tor}_{2}^{R}(k, k) \cong k
$$

Proof of (d). By part (c), $\operatorname{Tor}_{1}^{R}(k, I) \cong k \neq 0$. By DF Prop. 17.1.16, it follows that I is not a flat R-module.

Problem 2 (DF 17.2.9+). Let G be an infinite cyclic group with generator σ.
(a) Show that the map aug : $\mathbb{Z} G \rightarrow \mathbb{Z}$ defined by

$$
\operatorname{aug}\left(\sum_{i \in \mathbb{Z}} a_{i} \sigma^{i}\right)=\sum_{i \in \mathbb{Z}} a_{i}
$$

is a $(\mathbb{Z} G)$-module homomorphism, taking the trivial action of G on \mathbb{Z}.
(b) Prove that multiplication by $\sigma-1$ in $\mathbb{Z} G$ gives the following free resolution of \mathbb{Z} as a $(\mathbb{Z} G)$-module:

$$
0 \rightarrow \mathbb{Z} G \xrightarrow{\sigma-1} \mathbb{Z} G \xrightarrow{\text { aug }} \mathbb{Z} \rightarrow 0
$$

(c) Let A be a G-module. Show that $H^{0}(G, A) \cong A^{G}, H^{1}(G, A) \cong A /(\sigma-1) A$, and $H^{n}(G, A)=0$ for $n \geq 2$.
(d) Show that $H^{1}(G, \mathbb{Z} G) \cong \mathbb{Z}$.
(This shows that free modules can have nontrivial cohomology groups.)
Proof of (a). To show that aug is a $\mathbb{Z} G$-module homomorphism, it suffices to show that aug is \mathbb{Z} linear and $g \cdot \operatorname{aug}(x)=\operatorname{aug}(g \cdot x)$ for all $x \in \mathbb{Z} G$.

Let $\sum_{i \in \mathbb{Z}} a_{i} \sigma^{i}, \sum_{j \in \mathbb{Z}} b_{j} \sigma^{j} \in \mathbb{Z} G$. (By definition, only finitely many a_{i} and b_{j} are non-zero.) Let $\alpha, \beta \in \mathbb{Z}$. Then

$$
\begin{aligned}
\operatorname{aug}\left(\alpha \cdot \sum_{i \in \mathbb{Z}} a_{i} \sigma^{i}+\beta \cdot \sum_{j \in \mathbb{Z}} b_{j} \sigma^{j}\right) & =\operatorname{aug}\left(\sum_{i \in \mathbb{Z}}\left(\alpha \cdot a_{i}+\beta \cdot b_{i}\right) \sigma^{i}\right) \\
& =\sum_{i \in \mathbb{Z}}\left(\alpha \cdot a_{i}+\beta \cdot b_{i}\right) \\
& =\alpha \cdot \operatorname{aug}\left(\sum_{i \in \mathbb{Z}} a_{i} \sigma^{i}\right)+\beta \cdot \operatorname{aug}\left(\sum_{j \in \mathbb{Z}} b_{j} \sigma^{j}\right) .
\end{aligned}
$$

Similarly, for any $\sigma^{k} \in G$,

$$
\operatorname{aug}\left(\sigma^{k} \cdot \sum_{i \in \mathbb{Z}} a_{i} \sigma^{i}\right)=\operatorname{aug}\left(\sum_{i \in \mathbb{Z}} a_{i} \sigma^{i+k}\right)=\sum_{i \in \mathbb{Z}} a_{i}=\sigma^{k} \cdot\left(\sum_{i \in \mathbb{Z}} a_{i}\right)=\sigma^{k} \cdot \operatorname{aug}\left(\sum_{i \in \mathbb{Z}} a_{i} \sigma^{i}\right) .
$$

Proof of (b). Let $x=\sum_{i \in \mathbb{Z}} a_{i} \sigma^{i} \in \mathbb{Z} G$. Suppose that $x \in \operatorname{ker}(\sigma-1)$. Then

$$
0=(\sigma-1) \cdot \sum_{i \in \mathbb{Z}} a_{i} \sigma^{i}=\sum_{i \in \mathbb{Z}} a_{i}\left(\sigma^{i+1}-\sigma^{i}\right)=\sum_{i \in \mathbb{Z}}\left(a_{i-1}-a_{i}\right) \sigma^{i}
$$

Therefore $a_{i-1}=a_{i}$ for all i. However a_{i} is non-zero for only finitely-many i. Since all the a_{i} 's must be equal, this implies that $a_{i}=0$ for all i and $x=0$. Therefore multiplication by $\sigma-1$ defines an injective map on $\mathbb{Z} G$.

Note that the image of $\sigma-1$ belongs to the kernel of aug. To see this, note that

$$
\operatorname{aug}\left((\sigma-1) \cdot \sum_{i \in \mathbb{Z}} a_{i} \sigma^{i}\right)=\operatorname{aug}\left(\sum_{i \in \mathbb{Z}}\left(a_{i-1}-a_{i}\right) \sigma^{i}\right)=\sum_{i \in \mathbb{Z}}\left(a_{i-1}-a_{i}\right)=0
$$

For the reverse inclusion, suppose that $y=\sum_{j \in \mathbb{Z}} b_{j} \sigma^{j} \in \mathbb{Z} G$ belongs to the kernel of aug, i.e. $\sum_{j \in \mathbb{Z}} b_{j}$. For $y \neq 0$, let $M=\max \left\{j: b_{j} \neq 0\right\}$ and $m=\min \left\{j: b_{j} \neq 0\right\}$. We will show that $y \in \operatorname{image}(\sigma-1)$ by induction on $M-m$.

If $M-m=0$, then $y=b_{m} \sigma^{m}$ with $b_{m} \neq 0$ and $y \notin \operatorname{ker}(\mathrm{aug})$. If $M-m=1$, then $y=b_{m} \sigma^{m}+b_{m+1} \sigma^{m+1}$ and $b_{m}+b_{m+1}=0$. Then $y=(\sigma-1) b_{m+1} \sigma^{m} \in \operatorname{image}(\sigma-1)$.

Now suppose $M-m \geq 2$ and consider the element $z=y-b_{M} \sigma^{M-1}(\sigma-1)$. Then $\operatorname{aug}(z)=\operatorname{aug}(y)+b_{M} \cdot \operatorname{aug}(\sigma-1)=0+0=0$, so $z \in \operatorname{ker}(\operatorname{aug})$. Moreover, $z=\sum_{j \in \mathbb{Z}} c_{j} \sigma_{j}$ where $c_{j}=b_{j}$ for all $j \neq M-1, M$ and $c_{M}=0$. Therefore

$$
\max \left\{j: c_{j} \neq 0\right\}-\min \left\{j: c_{j} \neq 0\right\}=\max \left\{j: c_{j} \neq 0\right\}-m<M-m
$$

By induction $z \in \operatorname{image}(\sigma-1)$. Then $y=z+b_{M} \sigma^{M-1}(\sigma-1) \in \operatorname{image}(\sigma-1)$.
Finally, for all $a \in \mathbb{Z}, a \sigma \in \mathbb{Z} G$ and $\operatorname{aug}(a \sigma)=a$, so the map aug is surjective.
Proof of (c). Let A be a G-module. Recall that one definition of the group $H^{n}(G, A)$ is $\operatorname{Ext}_{\mathbb{Z} G}^{n}(\mathbb{Z}, A)$. To find this, we use the free resolution of \mathbb{Z} as a $\mathbb{Z} G$-module given in (b), take $\operatorname{Hom}_{\mathbb{Z} G}(-, A)$ (and drop the " \mathbb{Z} " term) to get the cochain complex:

$$
0 \rightarrow \operatorname{Hom}_{\mathbb{Z} G}(\mathbb{Z} G, A) \xrightarrow{\sigma-1} \operatorname{Hom}_{\mathbb{Z} G}(\mathbb{Z} G, A) \xrightarrow{d_{2}} 0
$$

Noting that $\operatorname{Hom}_{\mathbb{Z} G}(\mathbb{Z} G, A) \cong A$ gives

$$
0 \rightarrow A \xrightarrow{\sigma-1} A \xrightarrow{d_{2}} 0
$$

Then $H^{0}(G, A)=\operatorname{ker}(\sigma-1) \cong\{a \in A:(\sigma-1) a=0\}=\{a \in A: \sigma a=a\}=A^{G}$. We see that $H^{1}(G, A)=\operatorname{ker}\left(d_{2}\right) / \operatorname{image}(\sigma-1)=A /(\sigma-1) A$. Finally for $n \geq 2, H^{n}(G, A)=$ $\operatorname{ker}\left(d_{n+1}\right) / \operatorname{image}\left(d_{n}\right)=0$.
Proof of (d). By part (c), $H^{1}(G, \mathbb{Z} G) \cong \mathbb{Z} G /(\sigma-) \mathbb{Z} G$. By part (b), $(\sigma-1) \mathbb{Z} G$ equals the kernel of the $\mathbb{Z} G$-module homomorphism aug. Together with the first isomorphism theorem, this gives

$$
H^{1}(G, \mathbb{Z} G) \cong \mathbb{Z} G /(\sigma-1) \mathbb{Z} G=\mathbb{Z} G / \operatorname{ker}(\text { aug }) \cong \text { image }(\text { aug })=\mathbb{Z}
$$

