Math 721 - Homework 8 Solutions

Problem 1 (DF 17.1 Exercise 1). Give the details of the proof of the following proposition:
Proposition 17.1.1. A homomorphism $\alpha: \mathcal{A} \rightarrow \mathcal{B}$ of cochain complexes induces group homomorphisms from $H^{n}(\mathcal{A}) \rightarrow H^{n}(\mathcal{B})$ for $n \geq 0$ on their respective cohomology groups.

Proof. Consider the cochain complex \mathcal{A} given by abelian groups $\left\{A_{n}\right\}$ and maps $\phi_{n}: A_{n-1} \rightarrow$ A_{n} and the cochain complex \mathcal{B} given by groups $\left\{B_{n}\right\}$ and maps $\psi_{n}: B_{n-1} \rightarrow B_{n}$.

Let $\alpha: \mathcal{A} \rightarrow \mathcal{B}$ be a homomorphism of cochain complexes. By definition, this means a collection of group homomorphisms $\alpha_{n}: A_{n} \rightarrow B_{n}$ for every n, the following diagram commutes:

By definition the nth cohomology group of \mathcal{A} is $H^{n}(\mathcal{A})=\operatorname{ker}\left(\phi_{n+1}\right) / \operatorname{image}\left(\phi_{n}\right)$, and similarly $H^{n}(\mathcal{B})=\operatorname{ker}\left(\psi_{n+1}\right) / \operatorname{image}\left(\psi_{n}\right)$.

Suppose $a \in \operatorname{ker}\left(\phi_{n+1}\right)$. Then $\phi_{n+1}(a)=0$, and so commutativity of the right square above gives

$$
0=\alpha_{n+1}\left(\phi_{n+1}(a)\right)=\psi_{n+1}\left(\alpha_{n}(a)\right) .
$$

So $\alpha_{n}(a) \in \operatorname{ker}\left(\psi_{n+1}\right)$. This shows that α_{n} restricts to a map $\operatorname{ker}\left(\phi_{n+1}\right) \rightarrow \operatorname{ker}\left(\psi_{n+1}\right)$. This gives a natural homomorphism $\alpha_{n}^{\prime}: \operatorname{ker}\left(\phi_{n+1}\right) \rightarrow H^{n}(\mathcal{B})=\operatorname{ker}\left(\psi_{n+1}\right) /$ image $\left(\psi_{n}\right)$ given by $a \mapsto \alpha_{n}(a)+\operatorname{image}\left(\psi_{n}\right)$.

To see that this extends to a well-defined map from $H^{n}(\mathcal{A})=\operatorname{ker}\left(\phi_{n+1}\right) / \operatorname{image}\left(\phi_{n}\right)$ to $H^{n}(\mathcal{B})$, it suffices to check that the image of image $\left(\phi_{n}\right)$ under α_{n} is contained in image $\left(\psi_{n}\right)$. To see this, suppose $a \in \operatorname{image}\left(\phi_{n}\right)$. Then there is some $a^{\prime} \in A_{n-1}$ for which $a=\phi_{n}\left(a^{\prime}\right)$. Then by commutativity of the left square above,

$$
\alpha_{n}(a)=\alpha_{n}\left(\phi_{n}\left(a^{\prime}\right)\right)=\psi_{n}\left(\alpha_{n-1}\left(a^{\prime}\right)\right) \in \operatorname{image}\left(\psi_{n}\right) .
$$

This shows that the kernel of the homomorphism α_{n}^{\prime} contains image $\left(\phi_{n}\right)$, and so it induces a well-defined homomorphism from $H^{n}(\mathcal{A})=\operatorname{ker}\left(\phi_{n+1}\right) / \operatorname{image}\left(\phi_{n}\right)$ to $H^{n}(\mathcal{B})$ given by

$$
a+\operatorname{image}\left(\phi_{n}\right) \mapsto \alpha_{n}(a)+\operatorname{image}\left(\psi_{n}\right)
$$

Problem 2 (DF 17.1 Exercise 3). Suppose

is a commutative diagram of R-modules with exact rows. Show the following:
(a) If $c \in \operatorname{ker}(h)$ and $\beta(b)=c$, then $g(b) \in \operatorname{ker}\left(\beta^{\prime}\right)$ and $g(b)=\alpha^{\prime}\left(a^{\prime}\right)$ for some $a^{\prime} \in A^{\prime}$.
(b) The map $\delta: \operatorname{ker}(h) \rightarrow A^{\prime} / \operatorname{image}(f)$ given by $\delta(c)=a^{\prime} \bmod \operatorname{image}(f)$ is a welldefined R-module homomorphism.
(c) (The Snake Lemma) There is an exact sequence

$$
\operatorname{ker}(f) \rightarrow \operatorname{ker}(g) \rightarrow \operatorname{ker}(h) \xrightarrow{\delta} \operatorname{coker}(f) \rightarrow \operatorname{coker}(g) \rightarrow \operatorname{coker}(h),
$$

where coker $(f)=A^{\prime} / \operatorname{image}(f)$ denotes the cokernel of f and similarly for g and h.
(d) If α is injective and β^{\prime} is surjective (i.e. the two rows in the above commutative diagram can be extended to short exact sequences) then the sequence in (c) can be extended to an exact sequence

$$
0 \rightarrow \operatorname{ker}(f) \rightarrow \operatorname{ker}(g) \rightarrow \operatorname{ker}(h) \xrightarrow{\delta} \operatorname{coker}(f) \rightarrow \operatorname{coker}(g) \rightarrow \operatorname{coker}(h) \rightarrow 0
$$

Proof of (a). Suppose that $c \in \operatorname{ker}(h)$ and $\beta(b)=c$. By commutativity of the diagram above,

$$
\beta^{\prime}(g(b))=h(\beta(b))=h(c)=0
$$

showing that $g(b)$ belongs to the kernel of β^{\prime}. Moreover, since the bottom row is exact, $\operatorname{ker}\left(\beta^{\prime}\right)=\operatorname{image}\left(\alpha^{\prime}\right)$, so there exists some $a^{\prime} \in A^{\prime}$ for which $g(b)=\alpha^{\prime}\left(a^{\prime}\right)$.

Proof of (b). Consider the map $\delta: \operatorname{ker}(h) \rightarrow A^{\prime} / \operatorname{image}(f)$ given by $\delta(c)=a^{\prime} \bmod$ image (f). First, we show that this is well-defined. Let $c \in \operatorname{ker}(h)$ with $\beta(b)=\beta(\widetilde{b})=c$ where $g(b)=\alpha^{\prime}\left(a^{\prime}\right)$ and $g(\widetilde{b})=\alpha^{\prime}\left(\widetilde{a^{\prime}}\right)$. We need to show that $a^{\prime}-\widetilde{a^{\prime}} \in \operatorname{image}(f)$.

Note that

$$
\beta(b-\widetilde{b})=\beta(b)-\beta(\widetilde{b})=c-c=0
$$

$b-\widetilde{b} \in \operatorname{ker}(\beta)=$ image (α). Therefore there exists some $a \in A$ for which $\alpha(a)=b-\widetilde{b}$.
Furthermore, by the commutativity of the diagram above, $g(\alpha(a))=\alpha^{\prime}(f(a))$. Using this, we find that

$$
\alpha^{\prime}\left(a^{\prime}-\widetilde{a^{\prime}}\right)=\alpha^{\prime}\left(a^{\prime}\right)-\alpha^{\prime}\left(\widetilde{a^{\prime}}\right)=g(b)-g(\widetilde{b})=g(b-\widetilde{b})=g(\alpha(a))=\alpha^{\prime}(f(a)) .
$$

Since α^{\prime} is injective, this implies that $a^{\prime}-\widetilde{a^{\prime}}=f(a) \in \operatorname{image}(f)$, and thus the map δ is well-defined.

To see that δ is an R-module homomorphism, suppose that $x, y \in \operatorname{ker}(h)$ with $\beta\left(b_{1}\right)=x$, $\beta\left(b_{2}\right)=y$ and $g\left(b_{i}\right)=\alpha^{\prime}\left(a_{i}^{\prime}\right)$ for each i. Let $r \in R$.

Because β is an R-module homomorphism,

$$
\beta\left(b_{1}+r b_{2}\right)=\beta\left(b_{1}\right)+r \beta\left(b_{2}\right)=x+r y
$$

Moreover, since both g and α^{\prime} are R-module homomorphisms, we find that

$$
g\left(b_{1}+r b_{2}\right)=g\left(b_{1}\right)+r g\left(b_{2}\right)=\alpha^{\prime}\left(a_{1}^{\prime}\right)+r \alpha^{\prime}\left(a_{2}^{\prime}\right)=\alpha^{\prime}\left(a_{1}^{\prime}+r a_{2}^{\prime}\right) .
$$

So $\delta(x+r y)=\left(a_{1}^{\prime}+r a_{2}^{\prime}\right)+\operatorname{image}(f)=\delta(x)+r \delta(y)$, as desired.
Proof of (c). First, note that if $a \in \operatorname{ker}(f)$, then $f(a)=0$ and so

$$
0=\alpha^{\prime}(0)=\alpha^{\prime}(f(a))=g(\alpha(a))
$$

giving that $\alpha(a) \in \operatorname{ker}(g)$, so α restricting to a homomorphism $\alpha_{r}: \operatorname{ker}(f) \rightarrow \operatorname{ker}(g)$. By an analogous argument, β restricts to a homomorphism $\beta_{r}: \operatorname{ker}(g) \rightarrow \operatorname{ker}(h)$.
(Exactness at $\operatorname{ker}(g))$ Note that by definition and exactness of rows,

$$
\operatorname{ker}\left(\beta_{r}\right)=\operatorname{ker}(\beta) \cap \operatorname{ker}(g)=\operatorname{image}(\alpha) \cap \operatorname{ker}(g)
$$

Furthermore, for an element $a \in A$,

$$
\begin{aligned}
\alpha(a) \in \operatorname{ker}(g) & \Leftrightarrow 0=g(\alpha(a))=\alpha^{\prime}(f(a)) \\
& \Leftrightarrow f(a)=0 \\
& \Leftrightarrow a \in \operatorname{ker}(f) .
\end{aligned}
$$

(by injectivity of α^{\prime}) $\Leftrightarrow f(a)=0$

Therefore

$$
\operatorname{ker}\left(\beta_{r}\right)=\operatorname{image}(\alpha) \cap \operatorname{ker}(g)=\alpha(\operatorname{ker}(f))=\operatorname{image}\left(\alpha_{r}\right)
$$

(Exactness at $\operatorname{ker}(h))$ Let $c \in \operatorname{ker}(h)$.
Suppose that $\delta(c)=0$, meaning that $a^{\prime} \in \operatorname{image}(f)$. Then

$$
g(b) \in \alpha^{\prime}(\operatorname{image}(f))=g(\operatorname{image}(\alpha))=g(\operatorname{ker}(\beta))
$$

In particular, $g(b)=g(\widetilde{b})$ for some $\widetilde{b} \in \operatorname{ker}(\beta)$. Then $b-\widetilde{b} \in \operatorname{ker}(g)$ and

$$
\beta(b-\widetilde{b})=\beta(b)-\beta(\widetilde{b})=\beta(b)=c
$$

Therefore $c \in \beta(\operatorname{ker}(g))$, showing $\operatorname{ker}(\delta) \subseteq$ image $\left(\beta_{r}\right)$.
Similarly, if $c \in \beta(\operatorname{ker}(g))$, then $c=\beta(b)$ for some $b \in \operatorname{ker}(g)$. Since $c \in \operatorname{ker}(h)$, by part (a), there exists $a^{\prime} \in A^{\prime}$ with $0=g(b)=\alpha^{\prime}\left(a^{\prime}\right)$. Since α^{\prime} is injective, this implies that $0=a^{\prime}=\delta(c)$. So image $\left(\beta_{r}\right) \subseteq \operatorname{ker}(\delta)$.
(Exactness at coker f) The map coker $(f) \rightarrow \operatorname{coker}(g)$ is the homomorphism $a^{\prime}+\operatorname{image}(f) \mapsto$ $\alpha^{\prime}\left(a^{\prime}\right)+\operatorname{image}(g)$ induced by α^{\prime}. To see that this is well-defined, it suffices to show that $\alpha^{\prime}(\operatorname{image}(f)) \subseteq$ image (g), which follows from $\alpha^{\prime}(\operatorname{image}(f))=\alpha^{\prime}(f(A))=g(\alpha(A))$.

The kernel of this map is

$$
\begin{aligned}
\left\{a^{\prime}+\operatorname{image}(f):\right. & \left.: \alpha^{\prime}\left(a^{\prime}\right) \in \operatorname{image}(g)\right\} \\
& =\left\{a^{\prime}+\operatorname{image}(f): \alpha^{\prime}\left(a^{\prime}\right)=g(b) \text { for some } b \in B\right\} \\
& =\left\{a^{\prime}+\operatorname{image}(f): \alpha^{\prime}\left(a^{\prime}\right)=g(b) \text { for some } b \text { with } \beta(b) \in \operatorname{ker}(h)\right\} . \\
& =\operatorname{image}(\delta)
\end{aligned}
$$

To see the second-to-last equality, note that if $g(b) \in$ image $\left(\alpha^{\prime}\right)=\operatorname{ker}\left(\beta^{\prime}\right)$, then $h(\beta(b))=$ $\beta^{\prime}(g(b))=0$, so $\beta(b) \in \operatorname{ker}(h)$.
(Exactness at coker g) The map coker $(g) \rightarrow \operatorname{coker}(h)$ is the homomorphism $b^{\prime}+\operatorname{image}(g) \mapsto$ $\beta^{\prime}\left(b^{\prime}\right)+\operatorname{image}(h)$ induced by α^{\prime}. To see that this is well-defined, it suffices to show that $\beta^{\prime}(\operatorname{image}(g)) \subseteq$ image (h), which follows from $\beta^{\prime}(\operatorname{image}(g))=\beta^{\prime}(g(B))=h(\beta(B))$.

The kernel of this map is

$$
\begin{aligned}
& \qquad \begin{aligned}
&\left\{b^{\prime}+\operatorname{image}(g):\right.\left.\beta^{\prime}\left(b^{\prime}\right) \in \operatorname{image}(h)\right\} \\
&=\left\{b^{\prime}+\operatorname{image}(g): \beta^{\prime}\left(b^{\prime}\right)=h(c) \text { for some } c \in C\right\} \\
&=\left\{b^{\prime}+\operatorname{image}(g): \beta^{\prime}\left(b^{\prime}\right)=h(\beta(b)) \text { for some } b \in B\right\} \\
&=\left\{b^{\prime}+\operatorname{image}(g): \beta^{\prime}\left(b^{\prime}\right)=\beta^{\prime}(g(b)) \text { for some } b \in B\right\} \\
&=\left\{b^{\prime}+\operatorname{image}(g): b^{\prime}-g(b) \in \operatorname{ker}\left(\beta^{\prime}\right) \text { for some } b \in B\right\} \\
&=\left\{\widetilde{b^{\prime}}+\operatorname{image}(g): b^{\prime \prime} \in \operatorname{ker}\left(\beta^{\prime}\right)\right\} \\
&\text { (taking } \left.\widetilde{b^{\prime}}=b^{\prime}-g(b)\right) \\
& \text { (by exactness of bottom row) } \beta \text {) }=\left\{\widetilde{b^{\prime}}+\operatorname{image}(g): b^{\prime \prime} \in \operatorname{image}\left(\alpha^{\prime}\right)\right\} \\
&=\left\{\alpha^{\prime}\left(a^{\prime}\right)+\operatorname{image}(g): a^{\prime} \in A^{\prime}\right\} .
\end{aligned}
\end{aligned}
$$

This is exactly the image of the map coker $f \rightarrow$ coker g.
Proof of (d). (Injectivity of $\operatorname{ker}(f) \rightarrow \operatorname{ker}(g)$) Suppose that the map α is injective. Then the restriction of α to $\operatorname{ker}(g)$ must also be injective.
(Surjectivity of $\operatorname{coker}(g) \rightarrow \operatorname{coker}(h)$) Suppose that the map β^{\prime} is sujective. For any $c^{\prime}+\operatorname{image}(h) \in \operatorname{coker}(h)$, there exists $b^{\prime} \in B^{\prime}$ with $\beta^{\prime}\left(b^{\prime}\right)=c^{\prime}$. Therefore $c^{\prime}+\operatorname{image}(h)$ is the image of $b^{\prime}+\operatorname{image}(g)$ under the map $\operatorname{coker}(g) \rightarrow \operatorname{coker}(h)$ induced by β^{\prime}.

With the Snake Lemma from part(c), this gives that the follow sequence is exact:

$$
0 \rightarrow \operatorname{ker}(f) \rightarrow \operatorname{ker}(g) \rightarrow \operatorname{ker}(h) \xrightarrow{\delta} \operatorname{coker}(f) \rightarrow \operatorname{coker}(g) \rightarrow \operatorname{coker}(h) \rightarrow 0
$$

