
Math 721 – Homework 8 Solutions

Problem 1 (DF 17.1 Exercise 1). Give the details of the proof of the following proposition:

Proposition 17.1.1. A homomorphism α : A → B of cochain complexes induces group
homomorphisms from Hn(A)→ Hn(B) for n ≥ 0 on their respective cohomology groups.

Proof. Consider the cochain complex A given by abelian groups {An} and maps φn : An−1 →
An and the cochain complex B given by groups {Bn} and maps ψn : Bn−1 → Bn.

Let α : A → B be a homomorphism of cochain complexes. By definition, this means
a collection of group homomorphisms αn : An → Bn for every n, the following diagram
commutes:

An−1 An An+1

Bn−1 Bn Bn+1

φn

αn−1 αn

φn+1

αn+1

ψn ψn+1

By definition the nth cohomology group ofA is Hn(A) = ker(φn+1)/ image(φn), and similarly
Hn(B) = ker(ψn+1)/ image(ψn).

Suppose a ∈ ker(φn+1). Then φn+1(a) = 0, and so commutativity of the right square
above gives

0 = αn+1(φn+1(a)) = ψn+1(αn(a)).

So αn(a) ∈ ker(ψn+1). This shows that αn restricts to a map ker(φn+1) → ker(ψn+1). This
gives a natural homomorphism α′n : ker(φn+1) → Hn(B) = ker(ψn+1)/ image(ψn) given by
a 7→ αn(a) + image(ψn).

To see that this extends to a well-defined map from Hn(A) = ker(φn+1)/ image(φn) to
Hn(B), it suffices to check that the image of image(φn) under αn is contained in image(ψn).
To see this, suppose a ∈ image(φn). Then there is some a′ ∈ An−1 for which a = φn(a′).
Then by commutativity of the left square above,

αn(a) = αn(φn(a′)) = ψn(αn−1(a
′)) ∈ image(ψn).

This shows that the kernel of the homomorphism α′n contains image(φn), and so it induces
a well-defined homomorphism from Hn(A) = ker(φn+1)/ image(φn) to Hn(B) given by

a+ image(φn) 7→ αn(a) + image(ψn).
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Problem 2 (DF 17.1 Exercise 3). Suppose

A B C 0

0 A′ B′ C ′

α

f

β

g h

α′ β′

is a commutative diagram of R-modules with exact rows. Show the following:

(a) If c ∈ ker(h) and β(b) = c, then g(b) ∈ ker(β′) and g(b) = α′(a′) for some a′ ∈ A′.

(b) The map δ : ker(h) → A′/ image(f) given by δ(c) = a′ mod image(f) is a well-
defined R-module homomorphism.

(c) (The Snake Lemma) There is an exact sequence

ker(f)→ ker(g)→ ker(h)
δ→ coker(f)→ coker(g)→ coker(h),

where coker(f) = A′/ image(f) denotes the cokernel of f and similarly for g and h.

(d) If α is injective and β′ is surjective (i.e. the two rows in the above commutative
diagram can be extended to short exact sequences) then the sequence in (c) can be
extended to an exact sequence

0→ ker(f)→ ker(g)→ ker(h)
δ→ coker(f)→ coker(g)→ coker(h)→ 0.

Proof of (a). Suppose that c ∈ ker(h) and β(b) = c. By commutativity of the diagram
above,

β′(g(b)) = h(β(b)) = h(c) = 0,

showing that g(b) belongs to the kernel of β′. Moreover, since the bottom row is exact,
ker(β′) = image(α′), so there exists some a′ ∈ A′ for which g(b) = α′(a′). �

Proof of (b). Consider the map δ : ker(h)→ A′/ image(f) given by δ(c) = a′ mod image(f).

First, we show that this is well-defined. Let c ∈ ker(h) with β(b) = β(̃b) = c where

g(b) = α′(a′) and g(̃b) = α′(ã′). We need to show that a′ − ã′ ∈ image(f).
Note that

β(b− b̃) = β(b)− β(̃b) = c− c = 0,

b− b̃ ∈ ker(β) = image(α). Therefore there exists some a ∈ A for which α(a) = b− b̃.
Furthermore, by the commutativity of the diagram above, g(α(a)) = α′(f(a)). Using this,

we find that

α′(a′ − ã′) = α′(a′)− α′(ã′) = g(b)− g(̃b) = g(b− b̃) = g(α(a)) = α′(f(a)).

Since α′ is injective, this implies that a′ − ã′ = f(a) ∈ image(f), and thus the map δ is
well-defined.

To see that δ is an R-module homomorphism, suppose that x, y ∈ ker(h) with β(b1) = x,
β(b2) = y and g(bi) = α′(a′i) for each i. Let r ∈ R.



Because β is an R-module homomorphism,

β(b1 + rb2) = β(b1) + rβ(b2) = x+ ry.

Moreover, since both g and α′ are R-module homomorphisms, we find that

g(b1 + rb2) = g(b1) + rg(b2) = α′(a′1) + rα′(a′2) = α′(a′1 + ra′2).

So δ(x+ ry) = (a′1 + ra′2) + image(f) = δ(x) + rδ(y), as desired. �

Proof of (c). First, note that if a ∈ ker(f), then f(a) = 0 and so

0 = α′(0) = α′(f(a)) = g(α(a))

giving that α(a) ∈ ker(g), so α restricting to a homomorphism αr : ker(f)→ ker(g). By an
analogous argument, β restricts to a homomorphism βr : ker(g)→ ker(h).

(Exactness at ker(g)) Note that by definition and exactness of rows,

ker(βr) = ker(β) ∩ ker(g) = image(α) ∩ ker(g).

Furthermore, for an element a ∈ A,

α(a) ∈ ker(g)⇔ 0 = g(α(a)) = α′(f(a))

⇔ f(a) = 0(by injectivity of α′)

⇔ a ∈ ker(f).

Therefore
ker(βr) = image(α) ∩ ker(g) = α(ker(f)) = image(αr).

(Exactness at ker(h)) Let c ∈ ker(h).
Suppose that δ(c) = 0, meaning that a′ ∈ image(f). Then

g(b) ∈ α′(image(f)) = g(image(α)) = g(ker(β))

In particular, g(b) = g(̃b) for some b̃ ∈ ker(β). Then b− b̃ ∈ ker(g) and

β(b− b̃) = β(b)− β(̃b) = β(b) = c.

Therefore c ∈ β(ker(g)), showing ker(δ) ⊆ image(βr).
Similarly, if c ∈ β(ker(g)), then c = β(b) for some b ∈ ker(g). Since c ∈ ker(h), by part

(a), there exists a′ ∈ A′ with 0 = g(b) = α′(a′). Since α′ is injective, this implies that
0 = a′ = δ(c). So image(βr) ⊆ ker(δ).

(Exactness at coker f) The map coker(f)→ coker(g) is the homomorphism a′+image(f) 7→
α′(a′) + image(g) induced by α′. To see that this is well-defined, it suffices to show that
α′(image(f)) ⊆ image(g), which follows from α′(image(f)) = α′(f(A)) = g(α(A)).

The kernel of this map is

{a′ + image(f) :α′(a′) ∈ image(g)}
= {a′ + image(f) : α′(a′) = g(b) for some b ∈ B}
= {a′ + image(f) : α′(a′) = g(b) for some b with β(b) ∈ ker(h)}.
= image(δ).



To see the second-to-last equality, note that if g(b) ∈ image(α′) = ker(β′), then h(β(b)) =
β′(g(b)) = 0, so β(b) ∈ ker(h).

(Exactness at coker g) The map coker(g)→ coker(h) is the homomorphism b′+image(g) 7→
β′(b′) + image(h) induced by α′. To see that this is well-defined, it suffices to show that
β′(image(g)) ⊆ image(h), which follows from β′(image(g)) = β′(g(B)) = h(β(B)).

The kernel of this map is

{b′ + image(g) : β′(b′) ∈ image(h)}
= {b′ + image(g) : β′(b′) = h(c) for some c ∈ C}
= {b′ + image(g) : β′(b′) = h(β(b)) for some b ∈ B}(by surjectivity of β)

= {b′ + image(g) : β′(b′) = β′(g(b)) for some b ∈ B}
= {b′ + image(g) : b′ − g(b) ∈ ker(β′) for some b ∈ B}

= {b̃′ + image(g) : b′′ ∈ ker(β′)}(taking b̃′ = b′ − g(b))

= {b̃′ + image(g) : b′′ ∈ image(α′)}(by exactness of bottom row)

= {α′(a′) + image(g) : a′ ∈ A′}.
This is exactly the image of the map coker f → coker g. �

Proof of (d). (Injectivity of ker(f)→ ker(g)) Suppose that the map α is injective. Then the
restriction of α to ker(g) must also be injective.

(Surjectivity of coker(g) → coker(h)) Suppose that the map β′ is sujective. For any
c′+ image(h) ∈ coker(h), there exists b′ ∈ B′ with β′(b′) = c′. Therefore c′+ image(h) is the
image of b′ + image(g) under the map coker(g)→ coker(h) induced by β′.

With the Snake Lemma from part(c), this gives that the follow sequence is exact:

0→ ker(f)→ ker(g)→ ker(h)
δ→ coker(f)→ coker(g)→ coker(h)→ 0.
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