Math 721 — Homework 8 Solutions

Problem 1 (DF 17.1 Exercise 1). Give the details of the proof of the following proposition:

Proposition 17.1.1. A homomorphism « : A — B of cochain complexes induces group
homomorphisms from H"(A) — H"(B) for n > 0 on their respective cohomology groups.

Proof. Consider the cochain complex A given by abelian groups { A, } and maps ¢, : A,—1 —
A,, and the cochain complex B given by groups {B,} and maps ¢, : B,_1 — B,.

Let a : A — B be a homomorphism of cochain complexes. By definition, this means
a collection of group homomorphisms «,, : A, — B, for every n, the following diagram
commutes:

Pn Pn+1
An— 1 ” An > An—i—l

la,hl lan lanJrl

¢n T/’n-&-l

By definition the nth cohomology group of A is H"(A) = ker(¢,11)/image(¢, ), and similarly
H"(B) = ker(¢n41)/ image(tn).

Suppose a € ker(¢,+1). Then ¢,41(a) = 0, and so commutativity of the right square

above gives

0 = ani1(Pni1(a)) = Ynia(an(a)).
So ay(a) € ker(¢n41). This shows that «,, restricts to a map ker(¢,1) — ker(¢,,+1). This
gives a natural homomorphism o/, : ker(¢, 1) — H™(B) = ker(¢,41)/image(1),) given by
a — ay(a) + image(1y,).

To see that this extends to a well-defined map from H"(A) = ker(¢,1)/image(¢,) to
H"(B), it suffices to check that the image of image(¢,) under «,, is contained in image(t),,).
To see this, suppose a € image(¢p,). Then there is some o’ € A,_; for which a = ¢,(d’).
Then by commutativity of the left square above,

an(a) = an(¢n(a’)) = Pn(an-1(a)) € image(t,).
This shows that the kernel of the homomorphism «/, contains image(¢,), and so it induces
a well-defined homomorphism from H"(A) = ker(¢,+1)/ image(¢,) to H"(B) given by

a + image(¢,) — a,(a) + image(¢y,).



Problem 2 (DF 17.1 Exercise 3). Suppose
A—~ B > C > 0

ol

0 v A2y g o

is a commutative diagram of R-modules with exact rows. Show the following:

(a) If ¢ € ker(h) and (b) = ¢, then g(b) € ker(’) and g(b) = o/(a’) for some o’ € A’

(b) The map ¢ : ker(h) — A’/image(f) given by d(c¢) = o’ mod image(f) is a well-
defined R-module homomorphism.

(¢) (The Snake Lemma) There is an exact sequence

ker(f) — ker(g) — ker(h) KN coker(f) — coker(g) — coker(h),
where coker(f) = A’/image(f) denotes the cokernel of f and similarly for g and h.

(d) If « is injective and [’ is surjective (i.e. the two rows in the above commutative
diagram can be extended to short exact sequences) then the sequence in (c) can be
extended to an exact sequence

0 — ker(f) — ker(g) — ker(h) KN coker(f) — coker(g) — coker(h) — 0.

Proof of (a). Suppose that ¢ € ker(h) and 5(b) = ¢. By commutativity of the diagram
above,

B'(g(b)) = h(B(b)) = h(c) =0,
showing that ¢g(b) belongs to the kernel of . Moreover, since the bottom row is exact,
ker(’) = image(«’), so there exists some o’ € A’ for which ¢g(b) = o/(a’). O

Proof of (b). Consider the map ¢ : ker(h) — A’/ image(f) given by 6(c) = o’ mod image(f).
First, we show that this is well-defined. Let ¢ € ker(h) with 5(b) = S(b) = ¢ where

g(b) = /() and g(b) = o/(a’). We need to show that a’ — a’ € image(f).
Note that

Bb=b) = B(b) = f(b) =c — =0,
b— b € ker(B) = image(a). Therefore there exists some a € A for which a(a) = b — b.
Furthermore, by the commutativity of the diagram above, g(a(a)) = /(f(a)). Using this,
we find that

o/(d = @) = a(a) — o/ (@) = g(b) — g(b) = g(b—b) = g(a(a)) = a/(f(a).

Since o is injective, this implies that o’ — o/ = f(a) € image(f), and thus the map 0§ is
well-defined.

To see that ¢ is an R-module homomorphism, suppose that x,y € ker(h) with 5(b;) = «x,
B(by) =y and g(b;) = o/(a}) for each i. Let r € R.



Because (8 is an R-module homomorphism,
B(by + rby) = B(by) +1rB(b) = x + 1y.
Moreover, since both ¢ and o are R-module homomorphisms, we find that
g(by +1by) = g(b1) +1g(bs) = o(a}) + 10’ (a5) = o/ (a] + ray).
So 0(x + ry) = (a} + ray) + image(f) = d(x) + rd(y), as desired. O
Proof of (c¢). First, note that if a € ker(f), then f(a) = 0 and so
0=d/(0) =d'(f(a)) = g(a(a))

giving that a(a) € ker(g), so « restricting to a homomorphism «,. : ker(f) — ker(g). By an
analogous argument, (3 restricts to a homomorphism g, : ker(g) — ker(h).

(Exactness at ker(g)) Note that by definition and exactness of rows,
ker(8,) = ker(B) Nker(g) = image(a) N ker(g).
Furthermore, for an element a € A,
a(a) € ker(g) < 0 = g(a(a)) = o(f(a))
(by injectivity of o) < f(a) =0
< a € ker(f).

Therefore
ker(f,) = image(a) Nker(g) = a(ker(f)) = image(a, ).

(Exactness at ker(h)) Let ¢ € ker(h).
Suppose that d(c) = 0, meaning that ¢’ € image(f). Then

g(b) € o/ (image(f)) = g(image(a)) = g(ker(8))
In particular, g(b) = g(b) for some b € ker(8). Then b — b € ker(g) and

Bb—b) = B(b) — B(B) = B(b) = c.
Therefore ¢ € f(ker(g)), showing ker(d) C image(S,).
Similarly, if ¢ € B(ker(g)), then ¢ = 5(b) for some b € ker(g). Since ¢ € ker(h), by part
(a), there exists ' € A" with 0 = ¢(b) = o/(a’). Since ' is injective, this implies that
0=a"=0d(c). So image(f,) C ker(9).

(Exactness at coker f) The map coker(f) — coker(g) is the homomorphism a/+image(f) —
o/(a’) + image(g) induced by o/. To see that this is well-defined, it suffices to show that
o/(image(f)) C image(g), which follows from o/(image(f)) = o/(f(A)) = g(a(A)).

The kernel of this map is

{a' + image(f) :a/(a’) € image(g)}
= {a' + image(f) : a/(a’) = g(b) for some b € B}
(f) : &(a") = g(b) for some b with 3(b) € ker(h)}.

= {d' + image(f) :
= image(9).



To see the second-to-last equality, note that if g(b) € image(a’) = ker(5’), then h(5(b)) =
B'(g(b)) =0, so B(b) € ker(h).

(Exactness at coker g) The map coker(g) — coker(h) is the homomorphism b’ +image(g)
p'(t') + image(h) induced by o'. To see that this is well-defined, it suffices to show that
f'(image(g)) gfimage(h), which follows from f’(image(g)) = 8'(g(B)) = h(B(B)).

The kernel of this map is

{0’ + image(g) : B'(V') € image(h)}
= {b' + image(g) : §'(b") = h(c) for some ¢ € C'}
(by surjectivity of 3) = {b' + image(g) : 8'(V') = h(B(b)) for some b € B}
= {b' + image(g) : 8'(V') = '(g(b)) for some b € B}
(9)
(9)

= {V' + image(g) : b’ — g(b) € ker(3') for some b € B}

(taking &' = b’ — g(b)) = {V/ + image(g) : V" € ker(83')}
(by exactness of bottom row) = {I/ + image(g) : " € image()}
= {d/(d') +image(g) : a’ € A'}.
This is exactly the image of the map coker f — coker g. U

Proof of (d). (Injectivity of ker(f) — ker(g)) Suppose that the map « is injective. Then the
restriction of « to ker(g) must also be injective.

(Surjectivity of coker(g) — coker(h)) Suppose that the map [’ is sujective. For any
¢ 4 1image(h) € coker(h), there exists O’ € B" with §'(V') = . Therefore ¢’ 4+ image(h) is the
image of ¥’ + image(g) under the map coker(g) — coker(h) induced by /'

With the Snake Lemma from part(c), this gives that the follow sequence is exact:

0 — ker(f) — ker(g) — ker(h) KN coker(f) — coker(g) — coker(h) — 0.



