Math 721 — Homework 7 Solutions

Problem 1 (DF 15.1 Exercise 2). Show that each of the following rings are not Noetherian
by exhibiting an explicit infinite increasing chain of ideals.

(a) the ring of continuous real valued functions on [0, 1],

(b) the ring of all functions from N to Z/2Z.

Proof of (a). Let R denote the ring of continuous real valued functions on [0, 1]. For each
n e Z+, let
I,={f€R: f(x)=0forall z €0,1/n]}.

We can check that I, is an ideal of R. It is nonzero, since it contains the zero function. For
any fi1, fo € I, and g € R, we can check that for x € [0,1/n],

(f1+9f2)(@) = fi(z) + g(@)f2(x) = 0+ g(x) - 0= 0.
Therefore f;+gfe € I, and I, is an ideal. Moreover, since [0, 1/(n+1)] is a subset of [0, 1/n],
I,, is a subset of I, ;1. Moreover, for each n, we can define a continuous function

o if x € [0,1/n]
fulx) = {x —1/n ifxze (1/n,1].

Then f,4+1 belongs to I,,,1, but not I,,. Therefore I C I, C I3 C ... is an infinite ascending
chain of ideals that does not terminate. This shows that the ring R is not Noetherian. [J

Proof of (b). Let R denote the ring of the ring of all functions from N to Z/2Z For each
n c Z+, let
I,={f€eR: f(x)=0forall z > n}.

As in part (a), we can check that [, is an ideal of R. It contains the zero function and for
any fi, fo € I, and g € R, and for any = € N with > n,

(fr +9f2)(x) = fi(2) + g(2) fa(2) = 0 + g(2) - 0= 0.
Therefore f; + gfs € I, and I, is an ideal. Moreover if f(x) = 0 for all x > n, then
f(z) =0 for all x > n+ 1, giving that [, C I,,;1. Finally, for each n, consider the function
fn: N — Z/27 defined by f,(n) =1 and f,(m) = 0 for all m # n. Then f, belongs to I,
but not I,,, showing that I, C I,,;;. Therefore Iy C I, C I3 C ... is an infinite ascending
chain of ideals that does not terminate. This shows that the ring R is not Noetherian. [

Problem 2 (DF 15.2 Exercises 39,40). Let R be a Noetherian ring and suppose
I'=mZ,Q;

is a minimal primary decomposition of an ideal I C R. For each i, let P; = rad(Q;) be the
prime associated to @);. For a € R, define

I:{a)y={reR:arel}.
(a) Show that I : (a) is an ideal of R and I : (a) = R if and only if a € I.



Proof of (a). First, note that 0 = a-0 € I and so 0 € I : (a). Suppose that f,g € I : (a)
and ler » € R. Then af and ag belong to I, and therefore so does af + rag = a(f + rg).
This shows that f+rg € I : (a), thus [ : (a) is an ideal of R.

If a € I, then for every r € R, ar € I, giving R = I : {(a). Similarly, if R = I : (a), then
lel:{a),givinga=a-1€l. O

(b) Show that for any ideals I and J, (INJ): {a) = (I :{(a))N(J : (a)).
Proof of (b). For f € R, we have the following string of equivalent conditions:
fe(nJ):{a) & afelnd
< afelandafed
< fel:(a)and fe€J: {a)
& fe(l:{a)N(J:{(a))
[
(c) Show that if a € @Q;, then Q; : (a) is primary with rad(Q@; : (a)) = P; and that if
a ¢ P;, then Q; : (a) = Q;.
Proof of (c). Suppose that a ¢ Q; and suppose that rs € @Q; : (a) with s € Q; : (a). Then
a-rs=r-(as) € Q; and as € Q;. Since Q; is primary, it follows that r* € Q; C Q; : {a) for
some k € Z,. Therefore Q; : (a) is primary. Since @); is a subset of Q; : (a), P; = rad(Q;)
is contained in rad(Q; : {(a)). If r¥ € Q; : {(a), then ar® € Q;. Since a &€ Q;, some power
(r¥)* = r*¥¢ belongs to Q;, showing that r € rad(Q;). Therefore rad(Q; : (a)) = rad(Q;) = P;.
Suppose that @; : (a) ¢ @;. Then there exists some r € @Q; : (a) with r € Q;. By
definition, ra € Q;, and since @; is primary and r € Q;, a* € Q; for some k, giving that
a € P;. This shows that if a € P;, then @Q; : (a) is a subset of Q;. Since @; C Q; : (a) holds
by definition, we see that they must be equal. 0

(d) Show that

I:{a)= ﬂ(QZ : (a)) and rad([ : {a)) = ﬂrad(Qi : {a)).

Proof of (d). We can show the left equality by induction on m. For m = 1 this is clear. For
m > 1, we write I = J N Q,, where J = N";'Q;. By part (b), we have

I {a) = (J (@) N (Qm - {a)).
By induction J : {a) = N"75(Q; : (a)), giving that I : (a) = N7, (Q; : (a)).
The statement that rad(! : (a)) = N7, rad(Q; : (a)) then follows from the following:

Lemma 1. For any collection of ideals Jy, ..., J,, C R, rad(N™,J;) = N", rad(J;).
Proof of Lemma. Let f € R. Then
ferad(n, J;) < fFeni,J; for some k € N
& f* e J; for some k € N and for every i =1,...,m
(take k = max; k; or k; = k) & fF e J; for every i = 1,...,m and for some k; € N
& ferad(J;) foreveryi=1,...,m
& fen? rad(J;).



(e) Show that rad([ : (a)) is the intersection of the primes P; for which a & Q);.

Proof of part (e). By part (d),

m

rad(! : (a)) = ﬂrad(Qi {a)).

i=1
Note that by part (a), if a € @, then @Q; : (@) = R and rad(Q; : (a)) = R, meaning that it
does not contribute to the intersection above. If a ¢ @);, then by part (c), rad(Q; : (a)) = P,.

Therefore
rad(! : (a)) = ﬂ rad(Q ﬂ P,
i:a€Q; i:agQ;

(f) Show that if rad([ : (a)) is prime, then rad(I : (a)) = P; for some i.

Proof of (f). By part (e), rad(I : (a)) = Niago, D is an intersection of prime ideals. If
rad(/ : (a) is prime, then by the lemma below, it must be equal to one of those primes.

Lemma 2. If P, ..., P, C R are prime and N2, P; is prime, then N/, P, = P; for some j.

Proof of Lemma. Let Py, ..., P, C R be prime ideals. Suppose that for every j =1,... m,
N~ P; # P;. Since the mtersectlon is contained in FP;, this implies N2, P C P;. For each
j=1,...,m, let a; be an element of P; that is not in N>, P;. Then [[;", a; is belongs to
the 1ntersect10n N, P;, but none of its factors a; do. This shows that N, F; is prime. The
contrapositive gives the lemma. O

O

(g) Show that for each i = 1,...,m, there exists an element a € R with rad({ : (a)) = P,.
(Hint: consider a € (N;4Q;)\Q;.)

Proof of (g). Fix i € [m]. Since N;Q); is a minimal primary decomposition, N;.;@); is not a
subset of ();, meaning that there exists an element a in N;.Q; with a € Q;. By part (e),

rad(/ ﬂ P, =P,
J: agQ;
The last equality holds because a € @); for all j # i. OJ

(h) Show that for a prime ideal P C R, P has the form rad({ : (a)) for some a € R if
and only if P = P; for some 1.

Proof of (h). Let P C R be a prime ideal.

(=) If P has the form rad(! : (a)) for some a € R, then rad(/ : (a)) is prime and by part
(f), P =rad({ : (a)) = P, for some i.

(<) If P = P, for some i, then by part (g), there exists an element a € R for which
rad(! : (a)) = P. O

This shows that the set of primes associated to an ideal I is unique.



