
Math 721 – Homework 7 Solutions

Problem 1 (DF 15.1 Exercise 2). Show that each of the following rings are not Noetherian
by exhibiting an explicit infinite increasing chain of ideals.

(a) the ring of continuous real valued functions on [0, 1],

(b) the ring of all functions from N to Z/2Z.

Proof of (a). Let R denote the ring of continuous real valued functions on [0, 1]. For each
n ∈ Z+, let

In = {f ∈ R : f(x) = 0 for all x ∈ [0, 1/n]}.
We can check that In is an ideal of R. It is nonzero, since it contains the zero function. For
any f1, f2 ∈ In and g ∈ R, we can check that for x ∈ [0, 1/n],

(f1 + gf2)(x) = f1(x) + g(x)f2(x) = 0 + g(x) · 0 = 0.

Therefore f1+gf2 ∈ In and In is an ideal. Moreover, since [0, 1/(n+1)] is a subset of [0, 1/n],
In is a subset of In+1. Moreover, for each n, we can define a continuous function

fn(x) =

{
0 if x ∈ [0, 1/n]

x− 1/n if x ∈ (1/n, 1].

Then fn+1 belongs to In+1, but not In. Therefore I1 ( I2 ( I3 ( . . . is an infinite ascending
chain of ideals that does not terminate. This shows that the ring R is not Noetherian. �

Proof of (b). Let R denote the ring of the ring of all functions from N to Z/2Z For each
n ∈ Z+, let

In = {f ∈ R : f(x) = 0 for all x ≥ n}.
As in part (a), we can check that In is an ideal of R. It contains the zero function and for
any f1, f2 ∈ In and g ∈ R, and for any x ∈ N with x ≥ n,

(f1 + gf2)(x) = f1(x) + g(x)f2(x) = 0 + g(x) · 0 = 0.

Therefore f1 + gf2 ∈ In and In is an ideal. Moreover if f(x) = 0 for all x ≥ n, then
f(x) = 0 for all x ≥ n + 1, giving that In ⊆ In+1. Finally, for each n, consider the function
fn : N→ Z/2Z defined by fn(n) = 1 and fn(m) = 0 for all m 6= n. Then fn belongs to In+1

but not In, showing that In ( In+1. Therefore I1 ( I2 ( I3 ( . . . is an infinite ascending
chain of ideals that does not terminate. This shows that the ring R is not Noetherian. �

Problem 2 (DF 15.2 Exercises 39,40). Let R be a Noetherian ring and suppose

I = ∩mi=1Qi

is a minimal primary decomposition of an ideal I ⊂ R. For each i, let Pi = rad(Qi) be the
prime associated to Qi. For a ∈ R, define

I : 〈a〉 = {r ∈ R : ar ∈ I}.
(a) Show that I : 〈a〉 is an ideal of R and I : 〈a〉 = R if and only if a ∈ I.



Proof of (a). First, note that 0 = a · 0 ∈ I and so 0 ∈ I : 〈a〉. Suppose that f, g ∈ I : 〈a〉
and ler r ∈ R. Then af and ag belong to I, and therefore so does af + rag = a(f + rg).
This shows that f + rg ∈ I : 〈a〉, thus I : 〈a〉 is an ideal of R.

If a ∈ I, then for every r ∈ R, ar ∈ I, giving R = I : 〈a〉. Similarly, if R = I : 〈a〉, then
1 ∈ I : 〈a〉, giving a = a · 1 ∈ I. �

(b) Show that for any ideals I and J , (I ∩ J) : 〈a〉 = (I : 〈a〉) ∩ (J : 〈a〉).

Proof of (b). For f ∈ R, we have the following string of equivalent conditions:

f ∈ (I ∩ J) : 〈a〉 ⇔ af ∈ I ∩ J

⇔ af ∈ I and af ∈ J

⇔ f ∈ I : 〈a〉 and f ∈ J : 〈a〉
⇔ f ∈ (I : 〈a〉) ∩ (J : 〈a〉)

�

(c) Show that if a 6∈ Qi, then Qi : 〈a〉 is primary with rad(Qi : 〈a〉) = Pi and that if
a 6∈ Pi, then Qi : 〈a〉 = Qi.

Proof of (c). Suppose that a 6∈ Qi and suppose that rs ∈ Qi : 〈a〉 with s 6∈ Qi : 〈a〉. Then
a · rs = r · (as) ∈ Qi and as 6∈ Qi. Since Qi is primary, it follows that rk ∈ Qi ⊆ Qi : 〈a〉 for
some k ∈ Z+. Therefore Qi : 〈a〉 is primary. Since Qi is a subset of Qi : 〈a〉, Pi = rad(Qi)
is contained in rad(Qi : 〈a〉). If rk ∈ Qi : 〈a〉, then ark ∈ Qi. Since a 6∈ Qi, some power
(rk)` = rk` belongs to Qi, showing that r ∈ rad(Qi). Therefore rad(Qi : 〈a〉) = rad(Qi) = Pi.

Suppose that Qi : 〈a〉 6⊂ Qi. Then there exists some r ∈ Qi : 〈a〉 with r 6∈ Qi. By
definition, ra ∈ Qi, and since Qi is primary and r 6∈ Qi, a

k ∈ Qi for some k, giving that
a ∈ Pi. This shows that if a 6∈ Pi, then Qi : 〈a〉 is a subset of Qi. Since Qi ⊆ Qi : 〈a〉 holds
by definition, we see that they must be equal. �

(d) Show that

I : 〈a〉 =
m⋂
i=1

(Qi : 〈a〉) and rad(I : 〈a)〉 =
m⋂
i=1

rad(Qi : 〈a〉).

Proof of (d). We can show the left equality by induction on m. For m = 1 this is clear. For
m > 1, we write I = J ∩Qm where J = ∩m−1i=1 Qi. By part (b), we have

I : 〈a〉 = (J : 〈a〉) ∩ (Qm : 〈a〉).
By induction J : 〈a〉 = ∩m−1i=1 (Qi : 〈a〉), giving that I : 〈a〉 = ∩mi=1(Qi : 〈a〉).

The statement that rad(I : 〈a)〉 = ∩mi=1 rad(Qi : 〈a〉) then follows from the following:

Lemma 1. For any collection of ideals J1, . . . , Jm ⊆ R, rad(∩mi=1Ji) = ∩mi=1 rad(Ji).

Proof of Lemma. Let f ∈ R. Then

f ∈ rad(∩mi=1Ji)⇔ fk ∈ ∩mi=1Ji for some k ∈ N
⇔ fk ∈ Ji for some k ∈ N and for every i = 1, . . . ,m

⇔ fki ∈ Ji for every i = 1, . . . ,m and for some ki ∈ N(take k = maxi ki or ki = k)

⇔ f ∈ rad(Ji) for every i = 1, . . . ,m

⇔ f ∈ ∩mi=1 rad(Ji).



�

�

(e) Show that rad(I : 〈a〉) is the intersection of the primes Pi for which a 6∈ Qi.

Proof of part (e). By part (d),

rad(I : 〈a)〉 =
m⋂
i=1

rad(Qi : 〈a〉).

Note that by part (a), if a ∈ Qi, then Qi : 〈a〉 = R and rad(Qi : 〈a〉) = R, meaning that it
does not contribute to the intersection above. If a 6∈ Qi, then by part (c), rad(Qi : 〈a〉) = Pi.
Therefore

rad(I : 〈a)〉 =
⋂

i:a6∈Qi

rad(Qi : 〈a〉) =
⋂

i:a6∈Qi

Pi.

�

(f) Show that if rad(I : 〈a〉) is prime, then rad(I : 〈a〉) = Pi for some i.

Proof of (f). By part (e), rad(I : 〈a)〉 = ∩i:a6∈Qi
Pi is an intersection of prime ideals. If

rad(I : 〈a) is prime, then by the lemma below, it must be equal to one of those primes.

Lemma 2. If P1, . . . , Pm ⊂ R are prime and ∩m
i=1Pi is prime, then ∩mi=1Pi = Pj for some j.

Proof of Lemma. Let P1, . . . , Pm ⊂ R be prime ideals. Suppose that for every j = 1, . . . ,m,
∩mi=1Pi 6= Pj. Since the intersection is contained in Pj, this implies ∩mi=1Pi ( Pj. For each
j = 1, . . . ,m, let aj be an element of Pj that is not in ∩mi=1Pi. Then

∏m
i=1 ai is belongs to

the intersection ∩m
i=1Pi, but none of its factors aj do. This shows that ∩mi=1Pi is prime. The

contrapositive gives the lemma. �

�

(g) Show that for each i = 1, . . . ,m, there exists an element a ∈ R with rad(I : 〈a〉) = Pi.
(Hint: consider a ∈ (∩j 6=iQj)\Qi.)

Proof of (g). Fix i ∈ [m]. Since ∩jQj is a minimal primary decomposition, ∩j 6=iQj is not a
subset of Qi, meaning that there exists an element a in ∩j 6=iQj with a 6∈ Qi. By part (e),

rad(I : 〈a〉) =
⋂

j:a6∈Qj

Pj = Pi.

The last equality holds because a ∈ Qj for all j 6= i. �

(h) Show that for a prime ideal P ⊆ R, P has the form rad(I : 〈a〉) for some a ∈ R if
and only if P = Pi for some i.

Proof of (h). Let P ⊂ R be a prime ideal.
(⇒) If P has the form rad(I : 〈a〉) for some a ∈ R, then rad(I : 〈a〉) is prime and by part

(f), P = rad(I : 〈a〉) = Pi for some i.
(⇐) If P = Pi for some i, then by part (g), there exists an element a ∈ R for which

rad(I : 〈a〉) = P . �

This shows that the set of primes associated to an ideal I is unique.


