Math 721 - Homework 7 Solutions

Problem 1 (DF 15.1 Exercise 2). Show that each of the following rings are not Noetherian by exhibiting an explicit infinite increasing chain of ideals.
(a) the ring of continuous real valued functions on $[0,1]$,
(b) the ring of all functions from \mathbb{N} to $\mathbb{Z} / 2 \mathbb{Z}$.

Proof of (a). Let R denote the ring of continuous real valued functions on $[0,1]$. For each $n \in \mathbb{Z}_{+}$, let

$$
I_{n}=\{f \in R: f(x)=0 \text { for all } x \in[0,1 / n]\} .
$$

We can check that I_{n} is an ideal of R. It is nonzero, since it contains the zero function. For any $f_{1}, f_{2} \in I_{n}$ and $g \in R$, we can check that for $x \in[0,1 / n]$,

$$
\left(f_{1}+g f_{2}\right)(x)=f_{1}(x)+g(x) f_{2}(x)=0+g(x) \cdot 0=0 .
$$

Therefore $f_{1}+g f_{2} \in I_{n}$ and I_{n} is an ideal. Moreover, since $[0,1 /(n+1)]$ is a subset of $[0,1 / n]$, I_{n} is a subset of I_{n+1}. Moreover, for each n, we can define a continuous function

$$
f_{n}(x)= \begin{cases}0 & \text { if } x \in[0,1 / n] \\ x-1 / n & \text { if } x \in(1 / n, 1]\end{cases}
$$

Then f_{n+1} belongs to I_{n+1}, but not I_{n}. Therefore $I_{1} \subsetneq I_{2} \subsetneq I_{3} \subsetneq \ldots$ is an infinite ascending chain of ideals that does not terminate. This shows that the ring R is not Noetherian.
Proof of (b). Let R denote the ring of the ring of all functions from \mathbb{N} to $\mathbb{Z} / 2 \mathbb{Z}$ For each $n \in \mathbb{Z}_{+}$, let

$$
I_{n}=\{f \in R: f(x)=0 \text { for all } x \geq n\} .
$$

As in part (a), we can check that I_{n} is an ideal of R. It contains the zero function and for any $f_{1}, f_{2} \in I_{n}$ and $g \in R$, and for any $x \in \mathbb{N}$ with $x \geq n$,

$$
\left(f_{1}+g f_{2}\right)(x)=f_{1}(x)+g(x) f_{2}(x)=0+g(x) \cdot 0=0
$$

Therefore $f_{1}+g f_{2} \in I_{n}$ and I_{n} is an ideal. Moreover if $f(x)=0$ for all $x \geq n$, then $f(x)=0$ for all $x \geq n+1$, giving that $I_{n} \subseteq I_{n+1}$. Finally, for each n, consider the function $f_{n}: \mathbb{N} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ defined by $f_{n}(n)=1$ and $f_{n}(m)=0$ for all $m \neq n$. Then f_{n} belongs to I_{n+1} but not I_{n}, showing that $I_{n} \subsetneq I_{n+1}$. Therefore $I_{1} \subsetneq I_{2} \subsetneq I_{3} \subsetneq \ldots$ is an infinite ascending chain of ideals that does not terminate. This shows that the ring R is not Noetherian.

Problem 2 (DF 15.2 Exercises 39,40). Let R be a Noetherian ring and suppose

$$
I=\cap_{i=1}^{m} Q_{i}
$$

is a minimal primary decomposition of an ideal $I \subset R$. For each i, let $P_{i}=\operatorname{rad}\left(Q_{i}\right)$ be the prime associated to Q_{i}. For $a \in R$, define

$$
I:\langle a\rangle=\{r \in R: a r \in I\} .
$$

(a) Show that $I:\langle a\rangle$ is an ideal of R and $I:\langle a\rangle=R$ if and only if $a \in I$.

Proof of (a). First, note that $0=a \cdot 0 \in I$ and so $0 \in I:\langle a\rangle$. Suppose that $f, g \in I:\langle a\rangle$ and ler $r \in R$. Then $a f$ and $a g$ belong to I, and therefore so does $a f+r a g=a(f+r g)$. This shows that $f+r g \in I:\langle a\rangle$, thus $I:\langle a\rangle$ is an ideal of R.

If $a \in I$, then for every $r \in R$, ar $\in I$, giving $R=I:\langle a\rangle$. Similarly, if $R=I:\langle a\rangle$, then $1 \in I:\langle a\rangle$, giving $a=a \cdot 1 \in I$.
(b) Show that for any ideals I and $J,(I \cap J):\langle a\rangle=(I:\langle a\rangle) \cap(J:\langle a\rangle)$.

Proof of (b). For $f \in R$, we have the following string of equivalent conditions:

$$
\begin{aligned}
f \in(I \cap J):\langle a\rangle & \Leftrightarrow a f \in I \cap J \\
& \Leftrightarrow a f \in I \text { and } a f \in J \\
& \Leftrightarrow f \in I:\langle a\rangle \text { and } f \in J:\langle a\rangle \\
& \Leftrightarrow f \in(I:\langle a\rangle) \cap(J:\langle a\rangle)
\end{aligned}
$$

(c) Show that if $a \notin Q_{i}$, then $Q_{i}:\langle a\rangle$ is primary with $\operatorname{rad}\left(Q_{i}:\langle a\rangle\right)=P_{i}$ and that if $a \notin P_{i}$, then $Q_{i}:\langle a\rangle=Q_{i}$.

Proof of (c). Suppose that $a \notin Q_{i}$ and suppose that $r s \in Q_{i}:\langle a\rangle$ with $s \notin Q_{i}:\langle a\rangle$. Then $a \cdot r s=r \cdot(a s) \in Q_{i}$ and $a s \notin Q_{i}$. Since Q_{i} is primary, it follows that $r^{k} \in Q_{i} \subseteq Q_{i}:\langle a\rangle$ for some $k \in \mathbb{Z}_{+}$. Therefore $Q_{i}:\langle a\rangle$ is primary. Since Q_{i} is a subset of $Q_{i}:\langle a\rangle, P_{i}=\operatorname{rad}\left(Q_{i}\right)$ is contained in $\operatorname{rad}\left(Q_{i}:\langle a\rangle\right)$. If $r^{k} \in Q_{i}:\langle a\rangle$, then $a r^{k} \in Q_{i}$. Since $a \notin Q_{i}$, some power $\left(r^{k}\right)^{\ell}=r^{k \ell}$ belongs to Q_{i}, showing that $r \in \operatorname{rad}\left(Q_{i}\right)$. Therefore $\operatorname{rad}\left(Q_{i}:\langle a\rangle\right)=\operatorname{rad}\left(Q_{i}\right)=P_{i}$.

Suppose that $Q_{i}:\langle a\rangle \not \subset Q_{i}$. Then there exists some $r \in Q_{i}:\langle a\rangle$ with $r \notin Q_{i}$. By definition, $r a \in Q_{i}$, and since Q_{i} is primary and $r \notin Q_{i}, a^{k} \in Q_{i}$ for some k, giving that $a \in P_{i}$. This shows that if $a \notin P_{i}$, then $Q_{i}:\langle a\rangle$ is a subset of Q_{i}. Since $Q_{i} \subseteq Q_{i}:\langle a\rangle$ holds by definition, we see that they must be equal.
(d) Show that

$$
I:\langle a\rangle=\bigcap_{i=1}^{m}\left(Q_{i}:\langle a\rangle\right) \text { and } \operatorname{rad}(I:\langle a)\rangle=\bigcap_{i=1}^{m} \operatorname{rad}\left(Q_{i}:\langle a\rangle\right) .
$$

Proof of (d). We can show the left equality by induction on m. For $m=1$ this is clear. For $m>1$, we write $I=J \cap Q_{m}$ where $J=\cap_{i=1}^{m-1} Q_{i}$. By part (b), we have

$$
I:\langle a\rangle=(J:\langle a\rangle) \cap\left(Q_{m}:\langle a\rangle\right) .
$$

By induction $J:\langle a\rangle=\cap_{i=1}^{m-1}\left(Q_{i}:\langle a\rangle\right)$, giving that $I:\langle a\rangle=\cap_{i=1}^{m}\left(Q_{i}:\langle a\rangle\right)$.
The statement that $\operatorname{rad}(I:\langle a)\rangle=\cap_{i=1}^{m} \operatorname{rad}\left(Q_{i}:\langle a\rangle\right)$ then follows from the following:
Lemma 1. For any collection of ideals $J_{1}, \ldots, J_{m} \subseteq R, \operatorname{rad}\left(\cap_{i=1}^{m} J_{i}\right)=\cap_{i=1}^{m} \operatorname{rad}\left(J_{i}\right)$.
Proof of Lemma. Let $f \in R$. Then

$$
\begin{aligned}
f \in \operatorname{rad}\left(\cap_{i=1}^{m} J_{i}\right) & \Leftrightarrow f^{k} \in \cap_{i=1}^{m} J_{i} \text { for some } k \in \mathbb{N} \\
& \Leftrightarrow f^{k} \in J_{i} \text { for some } k \in \mathbb{N} \text { and for every } i=1, \ldots, m \\
\left(\text { take } k=\max _{i} k_{i} \text { or } k_{i}=k\right) & \Leftrightarrow f^{k_{i}} \in J_{i} \text { for every } i=1, \ldots, m \text { and for some } k_{i} \in \mathbb{N} \\
& \Leftrightarrow f \in \operatorname{rad}\left(J_{i}\right) \text { for every } i=1, \ldots, m \\
& \Leftrightarrow f \in \cap_{i=1}^{m} \operatorname{rad}\left(J_{i}\right) .
\end{aligned}
$$

(e) Show that $\operatorname{rad}(I:\langle a\rangle)$ is the intersection of the primes P_{i} for which $a \notin Q_{i}$.

Proof of part (e). By part (d),

$$
\operatorname{rad}(I:\langle a)\rangle=\bigcap_{i=1}^{m} \operatorname{rad}\left(Q_{i}:\langle a\rangle\right)
$$

Note that by part (a), if $a \in Q_{i}$, then $Q_{i}:\langle a\rangle=R$ and $\operatorname{rad}\left(Q_{i}:\langle a\rangle\right)=R$, meaning that it does not contribute to the intersection above. If $a \notin Q_{i}$, then by part (c), $\operatorname{rad}\left(Q_{i}:\langle a\rangle\right)=P_{i}$. Therefore

$$
\operatorname{rad}(I:\langle a)\rangle=\bigcap_{i: a \notin Q_{i}} \operatorname{rad}\left(Q_{i}:\langle a\rangle\right)=\bigcap_{i: a \notin Q_{i}} P_{i} .
$$

(f) Show that if $\operatorname{rad}(I:\langle a\rangle)$ is prime, then $\operatorname{rad}(I:\langle a\rangle)=P_{i}$ for some i.

Proof of (f). By part (e), $\operatorname{rad}(I:\langle a)\rangle=\cap_{i: a \notin Q_{i}} P_{i}$ is an intersection of prime ideals. If $\operatorname{rad}(I:\langle a)$ is prime, then by the lemma below, it must be equal to one of those primes.

Lemma 2. If $P_{1}, \ldots, P_{m} \subset R$ are prime and $\cap_{i=1}^{m} P_{i}$ is prime, then $\cap_{i=1}^{m} P_{i}=P_{j}$ for some j.
Proof of Lemma. Let $P_{1}, \ldots, P_{m} \subset R$ be prime ideals. Suppose that for every $j=1, \ldots, m$, $\cap_{i=1}^{m} P_{i} \neq P_{j}$. Since the intersection is contained in P_{j}, this implies $\cap_{i=1}^{m} P_{i} \subsetneq P_{j}$. For each $j=1, \ldots, m$, let a_{j} be an element of P_{j} that is not in $\cap_{i=1}^{m} P_{i}$. Then $\prod_{i=1}^{m} a_{i}$ is belongs to the intersection $\cap_{i=1}^{m} P_{i}$, but none of its factors a_{j} do. This shows that $\cap_{i=1}^{m} P_{i}$ is prime. The contrapositive gives the lemma.
(g) Show that for each $i=1, \ldots, m$, there exists an element $a \in R$ with $\operatorname{rad}(I:\langle a\rangle)=P_{i}$. (Hint: consider $a \in\left(\cap_{j \neq i} Q_{j}\right) \backslash Q_{i}$.)

Proof of (g). Fix $i \in[m]$. Since $\cap_{j} Q_{j}$ is a minimal primary decomposition, $\cap_{j \neq i} Q_{j}$ is not a subset of Q_{i}, meaning that there exists an element a in $\cap_{j \neq i} Q_{j}$ with $a \notin Q_{i}$. By part (e),

$$
\operatorname{rad}(I:\langle a\rangle)=\bigcap_{j: a \notin Q_{j}} P_{j}=P_{i} .
$$

The last equality holds because $a \in Q_{j}$ for all $j \neq i$.
(h) Show that for a prime ideal $P \subseteq R, P$ has the form $\operatorname{rad}(I:\langle a\rangle)$ for some $a \in R$ if and only if $P=P_{i}$ for some i.

Proof of (h). Let $P \subset R$ be a prime ideal.
(\Rightarrow) If P has the form $\operatorname{rad}(I:\langle a\rangle)$ for some $a \in R$, then $\operatorname{rad}(I:\langle a\rangle)$ is prime and by part (f), $P=\operatorname{rad}(I:\langle a\rangle)=P_{i}$ for some i.
(\Leftarrow) If $P=P_{i}$ for some i, then by part (g), there exists an element $a \in R$ for which $\operatorname{rad}(I:\langle a\rangle)=P$.
This shows that the set of primes associated to an ideal I is unique.

