Math 721 – Homework 7 Solutions

Problem 1 (DF 15.1 Exercise 2). Show that each of the following rings are *not* Noetherian by exhibiting an explicit infinite increasing chain of ideals.

- (a) the ring of continuous real valued functions on [0, 1],
- (b) the ring of all functions from \mathbb{N} to $\mathbb{Z}/2\mathbb{Z}$.

Proof of (a). Let R denote the ring of continuous real valued functions on [0, 1]. For each $n \in \mathbb{Z}_+$, let

$$I_n = \{ f \in R : f(x) = 0 \text{ for all } x \in [0, 1/n] \}.$$

We can check that I_n is an ideal of R. It is nonzero, since it contains the zero function. For any $f_1, f_2 \in I_n$ and $g \in R$, we can check that for $x \in [0, 1/n]$,

$$(f_1 + gf_2)(x) = f_1(x) + g(x)f_2(x) = 0 + g(x) \cdot 0 = 0.$$

Therefore $f_1 + gf_2 \in I_n$ and I_n is an ideal. Moreover, since [0, 1/(n+1)] is a subset of [0, 1/n], I_n is a subset of I_{n+1} . Moreover, for each n, we can define a continuous function

$$f_n(x) = \begin{cases} 0 & \text{if } x \in [0, 1/n] \\ x - 1/n & \text{if } x \in (1/n, 1]. \end{cases}$$

Then f_{n+1} belongs to I_{n+1} , but not I_n . Therefore $I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq \ldots$ is an infinite ascending chain of ideals that does not terminate. This shows that the ring R is not Noetherian. \Box

Proof of (b). Let R denote the ring of the ring of all functions from N to $\mathbb{Z}/2\mathbb{Z}$ For each $n \in \mathbb{Z}_+$, let

$$I_n = \{ f \in R : f(x) = 0 \text{ for all } x \ge n \}.$$

As in part (a), we can check that I_n is an ideal of R. It contains the zero function and for any $f_1, f_2 \in I_n$ and $g \in R$, and for any $x \in \mathbb{N}$ with $x \ge n$,

$$(f_1 + gf_2)(x) = f_1(x) + g(x)f_2(x) = 0 + g(x) \cdot 0 = 0.$$

Therefore $f_1 + gf_2 \in I_n$ and I_n is an ideal. Moreover if f(x) = 0 for all $x \ge n$, then f(x) = 0 for all $x \ge n+1$, giving that $I_n \subseteq I_{n+1}$. Finally, for each n, consider the function $f_n : \mathbb{N} \to \mathbb{Z}/2\mathbb{Z}$ defined by $f_n(n) = 1$ and $f_n(m) = 0$ for all $m \ne n$. Then f_n belongs to I_{n+1} but not I_n , showing that $I_n \subseteq I_{n+1}$. Therefore $I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots$ is an infinite ascending chain of ideals that does not terminate. This shows that the ring R is not Noetherian. \Box

Problem 2 (DF 15.2 Exercises 39,40). Let R be a Noetherian ring and suppose

$$I = \bigcap_{i=1}^{m} Q_i$$

is a minimal primary decomposition of an ideal $I \subset R$. For each i, let $P_i = \operatorname{rad}(Q_i)$ be the prime associated to Q_i . For $a \in R$, define

$$I:\langle a\rangle = \{r \in R : ar \in I\}.$$

(a) Show that $I : \langle a \rangle$ is an ideal of R and $I : \langle a \rangle = R$ if and only if $a \in I$.

Proof of (a). First, note that $0 = a \cdot 0 \in I$ and so $0 \in I : \langle a \rangle$. Suppose that $f, g \in I : \langle a \rangle$ and ler $r \in R$. Then af and ag belong to I, and therefore so does af + rag = a(f + rg). This shows that $f + rg \in I : \langle a \rangle$, thus $I : \langle a \rangle$ is an ideal of R.

If $a \in I$, then for every $r \in R$, $ar \in I$, giving $R = I : \langle a \rangle$. Similarly, if $R = I : \langle a \rangle$, then $1 \in I : \langle a \rangle$, giving $a = a \cdot 1 \in I$.

(b) Show that for any ideals I and J, $(I \cap J) : \langle a \rangle = (I : \langle a \rangle) \cap (J : \langle a \rangle).$

Proof of (b). For $f \in R$, we have the following string of equivalent conditions:

$$\begin{array}{ll} f \in (I \cap J) : \langle a \rangle & \Leftrightarrow & af \in I \cap J \\ & \Leftrightarrow & af \in I \text{ and } af \in J \\ & \Leftrightarrow & f \in I : \langle a \rangle \text{ and } f \in J : \langle a \rangle \\ & \Leftrightarrow & f \in (I : \langle a \rangle) \cap (J : \langle a \rangle) \end{array}$$

(c) Show that if $a \notin Q_i$, then $Q_i : \langle a \rangle$ is primary with $\operatorname{rad}(Q_i : \langle a \rangle) = P_i$ and that if $a \notin P_i$, then $Q_i : \langle a \rangle = Q_i$.

Proof of (c). Suppose that $a \notin Q_i$ and suppose that $rs \in Q_i : \langle a \rangle$ with $s \notin Q_i : \langle a \rangle$. Then $a \cdot rs = r \cdot (as) \in Q_i$ and $as \notin Q_i$. Since Q_i is primary, it follows that $r^k \in Q_i \subseteq Q_i : \langle a \rangle$ for some $k \in \mathbb{Z}_+$. Therefore $Q_i : \langle a \rangle$ is primary. Since Q_i is a subset of $Q_i : \langle a \rangle$, $P_i = \operatorname{rad}(Q_i)$ is contained in $\operatorname{rad}(Q_i : \langle a \rangle)$. If $r^k \in Q_i : \langle a \rangle$, then $ar^k \in Q_i$. Since $a \notin Q_i$, some power $(r^k)^\ell = r^{k\ell}$ belongs to Q_i , showing that $r \in \operatorname{rad}(Q_i)$. Therefore $\operatorname{rad}(Q_i : \langle a \rangle) = \operatorname{rad}(Q_i) = P_i$. Suppose that $Q_i : \langle a \rangle \notin Q_i$. Then there exists some $r \in Q_i : \langle a \rangle$ with $r \notin Q_i$. By

Suppose that Q_i . $(a) \not\subseteq Q_i$. Then there exists some $r \in Q_i$. (a) with $r \notin Q_i$. By definition, $ra \in Q_i$, and since Q_i is primary and $r \notin Q_i$, $a^k \in Q_i$ for some k, giving that $a \in P_i$. This shows that if $a \notin P_i$, then $Q_i : \langle a \rangle$ is a subset of Q_i . Since $Q_i \subseteq Q_i : \langle a \rangle$ holds by definition, we see that they must be equal.

(d) Show that

$$I: \langle a \rangle = \bigcap_{i=1}^{m} (Q_i: \langle a \rangle) \text{ and } \operatorname{rad}(I: \langle a \rangle) = \bigcap_{i=1}^{m} \operatorname{rad}(Q_i: \langle a \rangle).$$

Proof of (d). We can show the left equality by induction on m. For m = 1 this is clear. For m > 1, we write $I = J \cap Q_m$ where $J = \bigcap_{i=1}^{m-1} Q_i$. By part (b), we have

$$I: \langle a \rangle = (J: \langle a \rangle) \cap (Q_m: \langle a \rangle).$$

By induction $J : \langle a \rangle = \bigcap_{i=1}^{m-1} (Q_i : \langle a \rangle)$, giving that $I : \langle a \rangle = \bigcap_{i=1}^{m} (Q_i : \langle a \rangle)$.

The statement that $\operatorname{rad}(I:\langle a \rangle) = \bigcap_{i=1}^{m} \operatorname{rad}(Q_i:\langle a \rangle)$ then follows from the following: **Lemma 1.** For any collection of ideals $J_1, \ldots, J_m \subseteq R$, $\operatorname{rad}(\bigcap_{i=1}^{m} J_i) = \bigcap_{i=1}^{m} \operatorname{rad}(J_i)$. *Proof of Lemma.* Let $f \in R$. Then

$$f \in \operatorname{rad}(\bigcap_{i=1}^{m} J_i) \Leftrightarrow f^k \in \bigcap_{i=1}^{m} J_i \text{ for some } k \in \mathbb{N}$$

$$\Leftrightarrow f^k \in J_i \text{ for some } k \in \mathbb{N} \text{ and for every } i = 1, \dots, m$$

(take $k = \max_i k_i \text{ or } k_i = k$) $\Leftrightarrow f^{k_i} \in J_i \text{ for every } i = 1, \dots, m$ and for some $k_i \in \mathbb{N}$
 $\Leftrightarrow f \in \operatorname{rad}(J_i) \text{ for every } i = 1, \dots, m$
 $\Leftrightarrow f \in \bigcap_{i=1}^{m} \operatorname{rad}(J_i).$

(e) Show that $\operatorname{rad}(I:\langle a\rangle)$ is the intersection of the primes P_i for which $a \notin Q_i$.

Proof of part (e). By part (d),

$$\operatorname{rad}(I:\langle a\rangle) = \bigcap_{i=1}^{m} \operatorname{rad}(Q_i:\langle a\rangle).$$

Note that by part (a), if $a \in Q_i$, then $Q_i : \langle a \rangle = R$ and $\operatorname{rad}(Q_i : \langle a \rangle) = R$, meaning that it does not contribute to the intersection above. If $a \notin Q_i$, then by part (c), $\operatorname{rad}(Q_i : \langle a \rangle) = P_i$. Therefore

$$\operatorname{rad}(I:\langle a \rangle) = \bigcap_{i:a \notin Q_i} \operatorname{rad}(Q_i:\langle a \rangle) = \bigcap_{i:a \notin Q_i} P_i.$$

(f) Show that if $rad(I : \langle a \rangle)$ is prime, then $rad(I : \langle a \rangle) = P_i$ for some *i*.

Proof of (f). By part (e), $\operatorname{rad}(I : \langle a \rangle) = \bigcap_{i:a \notin Q_i} P_i$ is an intersection of prime ideals. If $\operatorname{rad}(I : \langle a \rangle)$ is prime, then by the lemma below, it must be equal to one of those primes.

Lemma 2. If $P_1, \ldots, P_m \subset R$ are prime and $\bigcap_{i=1}^m P_i$ is prime, then $\bigcap_{i=1}^m P_i = P_j$ for some j.

Proof of Lemma. Let $P_1, \ldots, P_m \subset R$ be prime ideals. Suppose that for every $j = 1, \ldots, m$, $\bigcap_{i=1}^m P_i \neq P_j$. Since the intersection is contained in P_j , this implies $\bigcap_{i=1}^m P_i \subsetneq P_j$. For each $j = 1, \ldots, m$, let a_j be an element of P_j that is not in $\bigcap_{i=1}^m P_i$. Then $\prod_{i=1}^m a_i$ is belongs to the intersection $\bigcap_{i=1}^m P_i$, but none of its factors a_j do. This shows that $\bigcap_{i=1}^m P_i$ is prime. The contrapositive gives the lemma.

(g) Show that for each i = 1, ..., m, there exists an element $a \in R$ with $rad(I : \langle a \rangle) = P_i$. (Hint: consider $a \in (\bigcap_{i \neq i} Q_i) \setminus Q_i$.)

Proof of (g). Fix $i \in [m]$. Since $\bigcap_j Q_j$ is a minimal primary decomposition, $\bigcap_{j \neq i} Q_j$ is not a subset of Q_i , meaning that there exists an element a in $\bigcap_{j \neq i} Q_j$ with $a \notin Q_i$. By part (e),

$$\operatorname{rad}(I:\langle a\rangle) = \bigcap_{j:a \notin Q_j} P_j = P_i$$

The last equality holds because $a \in Q_j$ for all $j \neq i$.

(h) Show that for a prime ideal $P \subseteq R$, P has the form $rad(I : \langle a \rangle)$ for some $a \in R$ if and only if $P = P_i$ for some i.

Proof of (h). Let $P \subset R$ be a prime ideal.

 (\Rightarrow) If P has the form $\operatorname{rad}(I : \langle a \rangle)$ for some $a \in R$, then $\operatorname{rad}(I : \langle a \rangle)$ is prime and by part (f), $P = \operatorname{rad}(I : \langle a \rangle) = P_i$ for some i.

 (\Leftarrow) If $P = P_i$ for some *i*, then by part (g), there exists an element $a \in R$ for which $rad(I : \langle a \rangle) = P$.

This shows that the set of primes associated to an ideal I is unique.