Math 721 - Homework 7

Due Friday, March 6 at 5pm

Good practice problems (do not turn in solutions):
DF 15.1: 1, 6, 7, 8 10, 11, 29, 30
DF 15.2: 2, 7, 30, 31, 32, 34, 38

Problem 1 (DF 15.1 Exercise 2). Show that each of the following rings are not Noetherian by exhibiting an explicit infinite increasing chain of ideals.
(a) the ring of continuous real valued functions on $[0,1]$,
(b) the ring of all functions from \mathbb{N} to $\mathbb{Z} / 2 \mathbb{Z}$.

Problem 2 (DF 15.2 Exercises 39,40). Let R be a Noetherian ring and suppose

$$
I=\cap_{i=1}^{m} Q_{i}
$$

is a minimal primary decomposition of an ideal $I \subset R$. For each i, let $P_{i}=\operatorname{rad}\left(Q_{i}\right)$ be the prime associated to Q_{i}. For $a \in R$, define

$$
I:\langle a\rangle=\{r \in R: a r \in I\} .
$$

(a) Show that $I:\langle a\rangle$ is an ideal of R and $I:\langle a\rangle=R$ if and only if $a \in I$.
(b) Show that for any ideals I and $J,(I \cap J):\langle a\rangle=(I:\langle a\rangle) \cap(J:\langle a\rangle)$.
(c) Show that if $a \notin Q_{i}$, then $Q_{i}:\langle a\rangle$ is primary with $\operatorname{rad}\left(Q_{i}:\langle a\rangle\right)=P_{i}$ and that if $a \notin P_{i}$, then $Q_{i}:\langle a\rangle=Q_{i}$.
(d) Show that

$$
I:\langle a\rangle=\cap_{i=1}^{m}\left(Q_{i}:\langle a\rangle\right) \text { and } \operatorname{rad}(I:\langle a)\rangle=\cap_{i=1}^{m} \operatorname{rad}\left(Q_{i}:\langle a\rangle\right) .
$$

(e) Show that $\operatorname{rad}(I:\langle a\rangle)$ is the intersection of the primes P_{i} for which $a \notin Q_{i}$.
(f) Show that if $\operatorname{rad}(I:\langle a\rangle)$ is prime, then $\operatorname{rad}(I:\langle a\rangle)=P_{i}$ for some i.
(g) Show that for each $i=1, \ldots, m$, there exists an element $a \in R$ with $\operatorname{rad}(I:\langle a\rangle)=P_{i}$. (Hint: consider $a \in\left(\cap_{j \neq i} Q_{j}\right) \backslash Q_{i}$.)
(h) Show that for a prime ideal $P \subseteq R, P$ has the form $\operatorname{rad}(I:\langle a\rangle)$ for some $a \in R$ if and only if $P=P_{i}$ for some i.
This shows that the set of primes associated to an ideal I is unique.

