Math 721 – Homework 6 Solutions

Problem 1 (DF 12.3 Exercise 19). Prove that all $n \times n$ matrices over F with characteristic polynomial f(x) are similar if and only if f(x) has no repeated factors in its unique factorization in F[x].

Proof. (\Rightarrow) Suppose that f has a repeated factor in its unique factorization in F[x], i.e. $f = f_1 \cdot f_2 \cdots f_k$ and $f_1 = f_2$, where each $f_i \in F[x]$ has degree ≥ 1 . Without loss of generality, we can take f and all its factors f_i to be monic. Let $g = f_1$ and $h = f_3 \cdots f_k$, so that $f = g^2 h$. Consider the matrices

$$A = \mathcal{C}_f$$
 and $B = \begin{pmatrix} \mathcal{C}_g & 0\\ 0 & \mathcal{C}_{g \cdot h} \end{pmatrix}$

where C_a denotes the companion matrix of the polynomial a. Since g divides $g \cdot h$, both of these matrices are in rational canonical form and have characteristic polynomial $f = g \cdot g \cdot h$. Since their rational canonical forms are different, they are not similar.

(\Leftarrow) Suppose that f(x) has no repeated factors in its unique factorization in F[x]. We know that the companion matrix C_f has characteristic polynomial f. Suppose that A is any matrix with characteristic polynomial f, and let $a_1(x), \ldots, a_m(x) \in F[x]$ denote the invariant factors of A. Note that the characteristic polynomial of f is $f = a_1 \cdots a_m$. If m > 1, then a_1 divides a_2 . If f_1 is an irreducible factor of a_1 in F[x], then f_1^2 divides f, meaning that f has a repeated factors in its unique factorization, giving a contradiction. Therefore m = 1 and $a_1 = f$. The rational canonical form of A is therefore C_f .

Problem 2 (DF 12.3 Exercises 29, 30). Let V be a vectorspace over a field F and $T: V \to V$ a linear transformation whose eigenvalues all lie in F. For any eigenvalue λ of T, the generalized eigenspace of T corresponding to λ is the p-primary component of V as a F[x]module corresponding to the prime $p = x - \lambda$. Equivalently, it is the subspace of vectors annihilated by some power of the linear operator $T - \lambda \cdot id_V$.

Let λ be an eigenvalue T and let W denote the corresponding generalized eigenspace. Suppose that V is finite dimensional.

- (a) Show that for any $k \ge 0$ the dimension of the kernel of $T \lambda \cdot \mathrm{id}$ on the vectorspace $(T \lambda \cdot \mathrm{id})^k W$ equals the dimension of the kernel of $T \lambda \cdot \mathrm{id}$ on the vectorspace $(T \lambda \cdot \mathrm{id})^k V$, and that this equals the number of Jordan blocks of T having eigenvalue λ and size > k.
- (b) Let $r_k = \dim_F (T \lambda \cdot \mathrm{id})^k V$. Show that for any $k \ge 1$, the number of Jordan blocks of size k with eigenvalue λ equals $r_{k-1} - 2r_k + r_{k+1}$. (You may use DF 12.1 Exercise 12 without proof.)

Proof of (a). Consider V as an F[x]-module defined by $x \cdot v = T(v)$ for $v \in V$. Then for any $\mu \in F$,

$$(x - \mu)^k \cdot v = (T - \mu \cdot \mathrm{id})^k (v).$$

Let $(x - \lambda_1)^{\alpha_1}, \ldots, (x - \lambda_s)^{\alpha_s}$ denote the list of elementary divisors of T, so that as F[x]-modules we have

$$V \cong F[x]/\langle (x-\lambda_1)^{\alpha_1} \rangle \oplus \ldots \oplus F[x]/\langle (x-\lambda_s)^{\alpha_s} \rangle.$$

For simplicity of notation, we will take the above isomorphism to be an equality in the rest of the proof. For any $f \in F[x]$, the linear transformation given by multiplication by f is done component-wise. Note that if $\lambda \neq \lambda_i$, $x - \lambda$ and $(x - \lambda_i)^{\alpha_i}$ are relatively prime and $x - \lambda$ is a unit in $F[x]/\langle (x - \lambda_i)^{\alpha_i}$. In particular, multiplication by $x - \lambda$ gives an invertible linear transformation on $F[x]/\langle (x - \lambda_i)^{\alpha_i} \rangle$.

Moreover, for $\lambda = \lambda_i$, the polynomial $(x - \lambda)^{\alpha_i}$ acts as the zero map on $F[x]/\langle (x - \lambda_i)^{\alpha_i}$. Therefore, under the isomorphism above,

$$W = \bigoplus_{\{i:\lambda_i=\lambda\}} F[x]/\langle (x-\lambda_i)^{\alpha_i} \rangle.$$

Then

$$(T-\lambda \mathrm{id})^k V = \bigoplus_{i=1}^{\circ} (x-\lambda)^k F[x] / \langle (x-\lambda_i)^{\alpha_i} \rangle \quad \text{and} \quad (T-\lambda \mathrm{id})^k W = \bigoplus_{\{i:\lambda_i=\lambda\}} (x-\lambda)^k F[x] / \langle (x-\lambda_i)^{\alpha_i} \rangle + \sum_{i=1}^{\circ} (x-\lambda_i)^k F[x] / \langle (x-\lambda_i)^{\alpha$$

Suppose that $v = ((x-\lambda)^k f_i + \langle (x-\lambda_i)^{\alpha_i} \rangle)_{i=1}^s$ in $(T-\lambda \mathrm{id})^k V$ belongs to the kernel of $T-\lambda \mathrm{id}$. This implies that $(x-\lambda) \cdot (x-\lambda)^k f_i \in \langle (x-\lambda_i)^{\alpha_i} \rangle$ for all $i = 1, \ldots, s$. When $\lambda \neq \lambda_i, (x-\lambda)^{k+1}$ and $(x-\lambda_i)^{\alpha_i}$ are relatively prime, and so this implies that $f_i \equiv 0 \mod \langle (x-\lambda_i)^{\alpha_i} \rangle$. This implies that $v \in (T-\lambda \mathrm{id})^k W$. Therefore the kernel of $T-\lambda \mathrm{id}$ on $(T-\lambda \mathrm{id})^k V$ equals its kernel on $(T-\lambda \mathrm{id})^k W$.

Moreover, for $\lambda = \lambda_i$, the element $(x - \lambda)^k f_i + \langle (x - \lambda)^{\alpha_i} \rangle$ is non-zero only when $k < \alpha_i$ and $f_i \notin \langle (x - \lambda)^{\alpha_i - k} \rangle$. For $k \ge \alpha_i$, $(x - \lambda)^k F[x]/\langle (x - \lambda)^{\alpha_i} \rangle = \{0\}$. Suppose that $k < \alpha_i$. This belongs to the kernel of the map given by multiplication by $x - \lambda$ if and only if $(x - \lambda)^{k+1} f_i \in \langle (x - \lambda)^{\alpha_i} \rangle$, which occurs if and only if $f_i \in \langle (x - \lambda)^{\alpha_i - k - 1} \rangle$. This shows that the kernel of multiplication by $(x - \lambda)$ on the space $(x - \lambda)^k F[x]/\langle (x - \lambda)^{\alpha_i} \rangle$ is the one dimensional subspace spanned by $(x - \lambda)^{\alpha_i - 1}$.

Put together, this shows that $\{(x - \lambda)^{\alpha_i - 1}e_i : \lambda = \lambda_i, k < \alpha_i\}$ is a basis for the kernel of multiplication by $(x - \lambda)$ on

$$(T - \lambda \cdot \mathrm{id})^k W = \bigoplus_{\{i:\lambda_i=\lambda\}} (x - \lambda)^k F[x] / \langle (x - \lambda_i)^{\alpha_i} \rangle.$$

Here, for each i = 1, ..., s, let e_i denote the element of $\bigoplus_{i=1}^{s} (x - \lambda)^k F[x] / \langle (x - \lambda_i)^{\alpha_i} \rangle$ with a 1 in the *i*th coordinate and zero elsewhere. In particular, the dimension of this kernel is $|\{i : \lambda = \lambda_i, k < \alpha_i\}|$, which is the number of Jordan blocks of T with eigenvalues λ and size > k.

Proof of (b). Let $r_k = \dim_F (T - \lambda \cdot id)^k V$ and let d_k denote the dimension of the kernel of $T - \lambda id$ on this vectorspace (as in part (a)). Note that the image of $(T - \lambda \cdot id)^k V$ under the map $T - \lambda \cdot id$ is $(T - \lambda \cdot id)^{k+1} V$, which has dimension r_{k+1} . Since the image is isomorphic to the quotient of the domain by the kernel, we find that

$$r_{k+1} = r_k - d_k$$
 and thus $d_k = r_k - r_{k+1}$.

By part (a), d_k equals the number of Jordan blocks with eigenvalue λ and size > k. The number of Jordan blocks with eigenvalue λ and size = k is the different between the number with size > k - 1 and the number with size > k, which is then

$$d_{k-1} - d_k = (r_{k-1} - r_k) - (r_k - r_{k+1}) = r_{k-1} - 2r_k + r_{k+1}.$$