## Math 721 - Homework 6 Solutions

Problem 1 (DF 12.3 Exercise 19). Prove that all $n \times n$ matrices over $F$ with characteristic polynomial $f(x)$ are similar if and only if $f(x)$ has no repeated factors in its unique factorization in $F[x]$.
Proof. $(\Rightarrow)$ Suppose that $f$ has a repeated factor in its unique factorization in $F[x]$, i.e. $f=f_{1} \cdot f_{2} \cdots f_{k}$ and $f_{1}=f_{2}$, where each $f_{i} \in F[x]$ has degree $\geq 1$. Without loss of generality, we can take $f$ and all its factors $f_{i}$ to be monic. Let $g=f_{1}$ and $h=f_{3} \cdots f_{k}$, so that $f=g^{2} h$. Consider the matrices

$$
A=\mathcal{C}_{f} \quad \text { and } \quad B=\left(\begin{array}{cc}
\mathcal{C}_{g} & 0 \\
0 & \mathcal{C}_{g \cdot h}
\end{array}\right)
$$

where $\mathcal{C}_{a}$ denotes the companion matrix of the polynomial $a$. Since $g$ divides $g \cdot h$, both of these matrices are in rational canonical form and have characteristic polynomial $f=g \cdot g \cdot h$. Since their rational canonical forms are different, they are not similar.
$(\Leftarrow)$ Suppose that $f(x)$ has no repeated factors in its unique factorization in $F[x]$. We know that the companion matrix $\mathcal{C}_{f}$ has characteristic polynomial $f$. Suppose that $A$ is any matrix with characteristic polynomial $f$, and let $a_{1}(x), \ldots, a_{m}(x) \in F[x]$ denote the invariant factors of $A$. Note that the characteristic polynomial of $f$ is $f=a_{1} \cdots a_{m}$. If $m>1$, then $a_{1}$ divides $a_{2}$. If $f_{1}$ is an irreducible factor of $a_{1}$ in $F[x]$, then $f_{1}^{2}$ divides $f$, meaning that $f$ has a repeated factors in its unique factorization, giving a contradiction. Therefore $m=1$ and $a_{1}=f$. The rational canonical form of $A$ is therefore $\mathcal{C}_{f}$.

Problem 2 (DF 12.3 Exercises 29, 30). Let $V$ be a vectorspace over a field $F$ and $T: V \rightarrow V$ a linear transformation whose eigenvalues all lie in $F$. For any eigenvalue $\lambda$ of $T$, the generalized eigenspace of $T$ corresponding to $\lambda$ is the $p$-primary component of $V$ as a $F[x]$ module corresponding to the prime $p=x-\lambda$. Equivalently, it is the subspace of vectors annihilated by some power of the linear operator $T-\lambda \cdot \mathrm{id}_{V}$.

Let $\lambda$ be an eigenvalue $T$ and let $W$ denote the corresponding generalized eigenspace. Suppose that $V$ is finite dimensional.
(a) Show that for any $k \geq 0$ the dimension of the kernel of $T-\lambda \cdot \mathrm{id}$ on the vectorspace $(T-\lambda \cdot \mathrm{id})^{k} W$ equals the dimension of the kernel of $T-\lambda \cdot \mathrm{id}$ on the vectorspace $(T-\lambda \cdot \mathrm{id})^{k} V$, and that this equals the number of Jordan blocks of $T$ having eigenvalue $\lambda$ and size $>k$.
(b) Let $r_{k}=\operatorname{dim}_{F}(T-\lambda \cdot \mathrm{id})^{k} V$. Show that for any $k \geq 1$, the number of Jordan blocks of size $k$ with eigenvalue $\lambda$ equals $r_{k-1}-2 r_{k}+r_{k+1}$. (You may use DF 12.1 Exercise 12 without proof.)
Proof of (a). Consider $V$ as an $F[x]$-module defined by $x \cdot v=T(v)$ for $v \in V$. Then for any $\mu \in F$,

$$
(x-\mu)^{k} \cdot v=(T-\mu \cdot \mathrm{id})^{k}(v)
$$

Let $\left(x-\lambda_{1}\right)^{\alpha_{1}}, \ldots,\left(x-\lambda_{s}\right)^{\alpha_{s}}$ denote the list of elementary divisors of $T$, so that as $F[x]-$ modules we have

$$
V \cong F[x] /\left\langle\left(x-\lambda_{1}\right)^{\alpha_{1}}\right\rangle \oplus \ldots \oplus F[x] /\left\langle\left(x-\lambda_{s}\right)^{\alpha_{s}}\right\rangle .
$$

For simplicity of notation, we will take the above isomorphism to be an equality in the rest of the proof. For any $f \in F[x]$, the linear transformation given by multiplication by $f$ is done component-wise. Note that if $\lambda \neq \lambda_{i}, x-\lambda$ and $\left(x-\lambda_{i}\right)^{\alpha_{i}}$ are relatively prime and $x-\lambda$ is a unit in $F[x] /\left\langle\left(x-\lambda_{i}\right)^{\alpha_{i}}\right.$. In particular, multiplication by $x-\lambda$ gives an invertible linear transformation on $F[x] /\left\langle\left(x-\lambda_{i}\right)^{\alpha_{i}}\right\rangle$.

Moreover, for $\lambda=\lambda_{i}$, the polynomial $(x-\lambda)^{\alpha_{i}}$ acts as the zero map on $F[x] /\left\langle\left(x-\lambda_{i}\right)^{\alpha_{i}}\right.$. Therefore, under the isomorphism above,

$$
W=\bigoplus_{\left\{i: \lambda_{i}=\lambda\right\}} F[x] /\left\langle\left(x-\lambda_{i}\right)^{\alpha_{i}}\right\rangle
$$

Then
$(T-\lambda \mathrm{id})^{k} V=\bigoplus_{i=1}^{s}(x-\lambda)^{k} F[x] /\left\langle\left(x-\lambda_{i}\right)^{\alpha_{i}}\right\rangle \quad$ and $\quad(T-\lambda \mathrm{id})^{k} W=\bigoplus_{\left\{i: \lambda_{i}=\lambda\right\}}(x-\lambda)^{k} F[x] /\left\langle\left(x-\lambda_{i}\right)^{\alpha_{i}}\right\rangle$.
Suppose that $v=\left((x-\lambda)^{k} f_{i}+\left\langle\left(x-\lambda_{i}\right)^{\alpha_{i}}\right\rangle\right)_{i=1}^{s}$ in $(T-\lambda i d)^{k} V$ belongs to the kernel of $T-\lambda \mathrm{id}$. This implies that $(x-\lambda) \cdot(x-\lambda)^{k} f_{i} \in\left\langle\left(x-\lambda_{i}\right)^{\alpha_{i}}\right\rangle$ for all $i=1, \ldots, s$. When $\lambda \neq \lambda_{i},(x-\lambda)^{k+1}$ and $\left(x-\lambda_{i}\right)^{\alpha_{i}}$ are relatively prime, and so this implies that $f_{i} \equiv 0$ modulo $\left\langle\left(x-\lambda_{i}\right)^{\alpha_{i}}\right\rangle$. This implies that $v \in(T-\lambda \mathrm{id})^{k} W$. Therefore the kernel of $T-\lambda \mathrm{id}$ on $(T-\lambda \mathrm{id})^{k} V$ equals its kernel on $(T-\lambda i d)^{k} W$.

Moreover, for $\lambda=\lambda_{i}$, the element $(x-\lambda)^{k} f_{i}+\left\langle(x-\lambda)^{\alpha_{i}}\right\rangle$ is non-zero only when $k<\alpha_{i}$ and $f_{i} \notin\left\langle(x-\lambda)^{\alpha_{i}-k}\right\rangle$. For $k \geq \alpha_{i},(x-\lambda)^{k} F[x] /\left\langle(x-\lambda)^{\alpha_{i}}\right\rangle=\{0\}$. Suppose that $k<$ $\alpha_{i}$. This belongs to the kernel of the map given by multiplication by $x-\lambda$ if and only if $(x-\lambda)^{k+1} f_{i} \in\left\langle(x-\lambda)^{\alpha_{i}}\right\rangle$, which occurs if and only if $f_{i} \in\left\langle(x-\lambda)^{\alpha_{i}-k-1}\right\rangle$. This shows that the kernel of multiplication by $(x-\lambda)$ on the space $(x-\lambda)^{k} F[x] /\left\langle(x-\lambda)^{\alpha_{i}}\right\rangle$ is the one dimensional subspace spanned by $(x-\lambda)^{\alpha_{i}-1}$.

Put together, this shows that $\left\{(x-\lambda)^{\alpha_{i}-1} e_{i}: \lambda=\lambda_{i}, k<\alpha_{i}\right\}$ is a basis for the kernel of multiplication by $(x-\lambda)$ on

$$
(T-\lambda \cdot \mathrm{id})^{k} W=\bigoplus_{\left\{i: \lambda_{i}=\lambda\right\}}(x-\lambda)^{k} F[x] /\left\langle\left(x-\lambda_{i}\right)^{\alpha_{i}}\right\rangle .
$$

Here, for each $i=1, \ldots, s$, let $e_{i}$ denote the element of $\bigoplus_{i=1}^{s}(x-\lambda)^{k} F[x] /\left\langle\left(x-\lambda_{i}\right)^{\alpha_{i}}\right\rangle$ with a 1 in the $i$ th coordinate and zero elsewhere. In particular, the dimension of this kernel is $\left|\left\{i: \lambda=\lambda_{i}, k<\alpha_{i}\right\}\right|$, which is the number of Jordan blocks of $T$ with eigenvalues $\lambda$ and size $>k$.

Proof of (b). Let $r_{k}=\operatorname{dim}_{F}(T-\lambda \cdot \mathrm{id})^{k} V$ and let $d_{k}$ denote the dimension of the kernel of $T-\lambda$ id on this vectorspace (as in part (a)). Note that the image of $(T-\lambda \cdot \mathrm{id})^{k} V$ under the map $T-\lambda \cdot \mathrm{id}$ is $(T-\lambda \cdot \mathrm{id})^{k+1} V$, which has dimension $r_{k+1}$. Since the image is isomorphic to the quotient of the domain by the kernel, we find that

$$
r_{k+1}=r_{k}-d_{k} \quad \text { and thus } \quad d_{k}=r_{k}-r_{k+1}
$$

By part (a), $d_{k}$ equals the number of Jordan blocks with eigenvalue $\lambda$ and size $>k$. The number of Jordan blocks with eigenvalue $\lambda$ and size $=k$ is the different between the number with size $>k-1$ and the number with size $>k$, which is then

$$
d_{k-1}-d_{k}=\left(r_{k-1}-r_{k}\right)-\left(r_{k}-r_{k+1}\right)=r_{k-1}-2 r_{k}+r_{k+1} .
$$

