Good practice problems (do not turn in solutions):
DF 12.3 Exercises 1, 2, 17, 18, 22, 23, 24, 32, 33, 37

Problem 1 (DF 12.3 Exercise 19). Prove that all \(n \times n \) matrices over \(F \) with characteristic polynomial \(f(x) \) are similar if and only if \(f(x) \) has no repeated factors in its unique factorization in \(F[x] \).

Problem 2 (DF 12.3 Exercises 29, 30). Let \(V \) be a vectorspace over a field \(F \) and \(T : V \to V \) a linear transformation whose eigenvalues all lie in \(F \). For any eigenvalue \(\lambda \) of \(T \), the **generalized eigenspace** of \(T \) corresponding to \(\lambda \) is the \(p \)-primary component of \(V \) as a \(F[x] \)-module corresponding to the prime \(p = x - \lambda \). Equivalently, it is the subspace of vectors annihilated by some power of the linear operator \(T - \lambda \cdot \text{id}_V \).

Let \(\lambda \) be an eigenvalue of \(T \) and let \(W \) denote the corresponding generalized eigenspace. Suppose that \(V \) is finite dimensional.

(a) Show that for any \(k \geq 0 \) the dimension of the kernel of \(T - \lambda \cdot \text{id} \) on the vectorspace \((T - \lambda \cdot \text{id})^kW\) equals the dimension of the kernel of \(T - \lambda \cdot \text{id} \) on the vectorspace \((T - \lambda \cdot \text{id})^kV\), and that this equals the number of Jordan blocks of \(T \) having eigenvalue \(\lambda \) and size > \(k \).

(b) Let \(r_k = \dim_F(T - \lambda \cdot \text{id})^kV \). Show that for any \(k \geq 1 \), the number of Jordan blocks of size \(k \) with eigenvalue \(\lambda \) equals \(r_{k-1} - 2r_k + r_{k+1} \). (You may use DF 12.1 Exercise 12 without proof.)