Math 721 - Homework 6

Due Friday, February 28 at 5pm

Good practice problems (do not turn in solutions):
DF 12.3 Exercises 1,2, 17, 18, 22, 23, 24, 32, 33, 37

Problem 1 (DF 12.3 Exercise 19). Prove that all $n \times n$ matrices over F with characteristic polynomial $f(x)$ are similar if and only if $f(x)$ has no repeated factors in its unique factorization in $F[x]$.

Problem 2 (DF 12.3 Exercises 29, 30). Let V be a vectorspace over a field F and $T: V \rightarrow V$ a linear transformation whose eigenvalues all lie in F. For any eigenvalue λ of T, the generalized eigenspace of T corresponding to λ is the p-primary component of V as a $F[x]$ module corresponding to the prime $p=x-\lambda$. Equivalently, it is the subspace of vectors annihilated by some power of the linear operator $T-\lambda \cdot \mathrm{id}_{V}$.

Let λ be an eigenvalue T and let W denote the corresponding generalized eigenspace. Suppose that V is finite dimensional.
(a) Show that for any $k \geq 0$ the dimension of the kernel of $T-\lambda \cdot$ id on the vectorspace $(T-\lambda \cdot \mathrm{id})^{k} W$ equals the dimension of the kernel of $T-\lambda \cdot \mathrm{id}$ on the vectorspace $(T-\lambda \cdot \mathrm{id})^{k} V$, and that this equals the number of Jordan blocks of T having eigenvalue λ and size $>k$.
(b) Let $r_{k}=\operatorname{dim}_{F}(T-\lambda \cdot \mathrm{id})^{k} V$. Show that for any $k \geq 1$, the number of Jordan blocks of size k with eigenvalue λ equals $r_{k-1}-2 r_{k}+r_{k+1}$. (You may use DF 12.1 Exercise 12 without proof.)

