Math 721 - Homework 5 Solutions

Problem 1 (DF 12.1 Exercise 6). Show that if R is an integral domain and M is any nonprincipal ideal of R, then as an R-module, M is torsion-free of rank 1, but is not a free R-module.

Proof. Let R be an integral domain and let M be a non-principal ideal of R. To see that M is torsion-free, let $r \in R \backslash\{0\}$ and $m \in M$. Since R is an integral domain, $r m=0$ implies that $m=0$, giving that $\operatorname{Tor}(M)=\{0\}$ and M is torsion free.

Since M is non-principal, $M \neq\{0\}$ and so it has rank ≥ 1. Any two nonzero elements $a, b \in M \backslash\{0\}$ satisfy an R-linear relation, namely

$$
(-b) \cdot a+(a) \cdot b=0
$$

and so are not R-linearly independent. Therefore the rank of M at most one.
To see that M is not a free R-module, suppose for the sake of contradiction that M is a free R-module of rank n. Since the rank of M is one, we see immediately that $n=1$. Thus there is some element $a \in M$ for which $M=R \cdot a$. This means that M is the principal ideal $\langle a\rangle$, contradicting our assumption that M is not principal. Therefore M is not free.

Problem 2 (DF 12.2 Exercises 3, 4). Let F be a field.
(a) Prove that two 2×2 matrices over F which are not scalar multiple of the identity matrix are similar if and only if they have the same characteristic polynomial.
(b) Prove that two 3×3 matrices over F are similar if and only if they have the same characteristic and minimal polynomials.
(c) Give an explicit counterexample to the statement of (b) for 4×4 matrices.

First, note that any two similar matrices have the same invariant factors $a_{1}(x), \ldots, a_{m}(x)$ and therefore the same characteristic polynomial $\prod_{i=1}^{m} a_{i}(x)$ and minimal polynomial $a_{m}(x)$. This gives (\Rightarrow) in parts (a) and (b).

Proof of (a). Suppose that $A, B \in \operatorname{Mat}_{2}(F)$ have characteristic polynomials $c_{A}(x)=c_{B}(x)$. Let $a_{1}(x), \ldots, a_{m}(x)$ be the invariant factors of A.

If $m>1$, then $m=2$. Moreover, since $a_{1}(x)$ divides $a_{2}(x)$ and their product is the degree-two polynomial $c_{A}(x)$, both must must linear and equal. Then $a_{1}(x)=a_{2}(x)=x-\lambda$ for some $\lambda \in F$. These are exactly the invariant factors of $\lambda \cdot \mathrm{id}_{2}$. Note that the only matrix similar to $\lambda \cdot \mathrm{id}_{2}$ is itself, therefore this would imply that $A=\lambda \cdot \mathrm{id}_{2}$. Since A is not a scalar multiple of the identity matrix, it must be that $m=1$ and $a_{1}(x)=c_{A}(x)$.

Similarly, B can only have one invariant factor, which must equal $c_{B}(x)$. Since A and B have the same list of invariant factors, they must be similar.

Proof of (b). Suppose that $A, B \in \operatorname{Mat}_{3}(F)$ have minimal polynomials $m_{A}(x)=m_{B}(x)$ and characteristic polynomials $c_{A}(x)=c_{B}(x)$. Let $a_{1}(x), \ldots, a_{m}(x)$ be the invariant factors of A.

If the degree of $m_{A}(x)$ is one, then $a_{m}=m_{A}(x)=x-\lambda$ for some $\lambda \in F$. Since the invariant factors must divide each other and multiply to the cubic polynomial $c_{A}(x)$, then gives that $m=3$ and $a_{1}(x)=a_{2}(x)=a_{3}(x)=x-\lambda$. The same argument holds for the
invariant factors of B. Since A and B have the same list of invariant factors, they must be similar.

If the degree of $m_{A}(x)$ is two, then $m=2$ and $a_{2}(x)=m_{A}(x)$. Then $a_{1}(x)=c_{A}(x) / m_{A}(x)$. Again, the list of invariant factors of A is uniquely determined by $m_{A}(x)$ and $c_{A}(x)$, so B must have the same list of invariant factors and be similar.

If the degree of $m_{A}(x)$ is three, then $m=1$ and $a_{1}(x)=c_{A}(x)$. Since the list of invariant factors of A is uniquely determined by $m_{A}(x)$ and $c_{A}(x), B$ must have the same list of invariant factors and be similar.
Proof of (c). Consider the lists of invariant factors $a_{1}=x, a_{2}=x, a_{3}=x^{2}$ and $b_{1}=x^{2}$, $b_{2}=x^{2}$ with corresponding matrices

$$
A=\left(\begin{array}{ccc}
C_{a_{1}} & & \\
& C_{a_{2}} & \\
& & C_{a_{3}}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
C_{b_{1}} & \\
& C_{b_{2}}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

These have the same minimal polynomial $a_{3}=b_{2}=x^{2}$ and same characteristic polynomials $a_{1} \cdot a_{2} \cdot a_{3}=b_{1} \cdot b_{2}=x^{4}$. Since they do not have the same lists of invariant factors, they are not similar.

