Math 721 - Homework 4 Solutions

Problem 1 (Graded rings and quotients).
(a) [DF Exercise 11.5.2] Fill in the details for the proof of Proposition 11.5.33. That is, show that for a graded ideal I of a graded ring S with $I_{k}=I \cap S_{k}$, the quotient ring S / I is a graded ring with $(S / I)_{k} \cong S_{k} / I_{k}$. (Hint: it may be useful to check out the hint in Exercise 2 and the proof sketch of Proposition 33 of DF §11.5.)
(b) Consider the graded ring $S=\mathbb{Q}[x, y]$ and ideal $I=\left\langle x^{4}, y^{4}\right\rangle$. Give a basis for each of the following \mathbb{Q}-vectorspaces (and justify your answers):
(i) S_{5},
(ii) I_{5},
(iii) $(S / I)_{5}$.

Proof of (a). Let $S=\oplus_{k=0}^{\infty} S_{k}$ be a graded ring and $I=\oplus_{k=0}^{\infty} I_{k}$ be a graded ideal of S, with $I_{k}=S_{k} \cap I$. First, we show that $\oplus_{k=0}^{\infty} S_{k} / I_{k}$ is a graded ring under coordinate-wise addition and multiplication defined by

$$
\left(s_{i}+I_{i}\right)_{i} \cdot\left(s_{j}^{\prime}+I_{j}\right)_{j}=\left(\sum_{i+j=k} s_{i} s_{j}^{\prime}+I_{k}\right)_{k}
$$

In particular, we need to show that this multiplication is well defined. Suppose $r_{i}+I_{i}=s_{i}+I_{i}$ and $r_{j}^{\prime}+I_{j}=s_{j}^{\prime}+I_{j}$. Then $\left(r_{i}-s_{i}\right) r_{j}^{\prime}$ and $s_{i}\left(r_{j}^{\prime}-s_{j}^{\prime}\right)$ both belong to $S_{i+j} \cap I=I_{i+j}$. Note that we can write

$$
r_{i} r_{j}^{\prime}=s_{i} s_{j}^{\prime}+\left(r_{i}-s_{i}\right) r_{j}^{\prime}+s_{i}\left(r_{j}^{\prime}-s_{j}^{\prime}\right),
$$

which shows that

$$
r_{i} r_{j}^{\prime}+I_{i+j}=s_{i} s_{j}^{\prime}+I_{i+j}
$$

Thus the multiplication on $\oplus_{k=0}^{\infty} S_{k} / I_{k}$ is well-defined.
To see that $R=\oplus_{k=0}^{\infty} S_{k} / I_{k}$ is a ring with the multiplication, note first that it is immediate that R is an abelian group under coordinate-wise addition. To check that multiplication is associative, note that

$$
\left(\left(a_{i}+I_{i}\right)_{i} \cdot\left(b_{j}+I_{j}\right)_{j}\right) \cdot\left(c_{k}+I_{k}\right)_{k}=\left(\sum_{i+j+k=\ell} a_{i} b_{j} c_{k}+I_{\ell}\right)_{\ell}=\left(a_{i}+I_{i}\right)_{i} \cdot\left(\left(b_{j}+I_{j}\right)_{j} \cdot\left(c_{k}+I_{k}\right)_{k}\right)
$$

For distributivity,

$$
\begin{aligned}
\left(\left(a_{i}+I_{i}\right)_{i}+\left(b_{i}+I_{i}\right)_{i}\right) \cdot\left(c_{j}+I_{j}\right)_{j} & =\left(a_{i}+b_{i}+I_{i}\right)_{i} \cdot\left(c_{j}+I_{j}\right)_{j} \\
& =\left(\sum_{i+j=k}\left(a_{i}+b_{i}\right) c_{j}+I_{k}\right)_{k} \\
& =\left(\sum_{i+j=k} a_{i} c_{j}+I_{k}\right)_{k}+\left(\sum_{i+j=k} b_{i} c_{j}+I_{k}\right)_{k} \\
& =\left(\left(a_{i}+I_{i}\right)_{i} \cdot\left(c_{j}+I_{j}\right)_{j}\right)+\left(\left(b_{i}+I_{i}\right)_{i} \cdot\left(c_{j}+I_{j}\right)_{j}\right) .
\end{aligned}
$$

Therefore $\oplus_{k=0}^{\infty} S_{k} / I_{k}$ is a ring. It follows immediately from the definition of multiplication that it is graded, i.e. $\left(S_{i} / I_{i}\right) \cdot\left(S_{j} / I_{j}\right) \subseteq S_{i+j} / I_{i+j}$.

Now consider the homomorphism $\pi: S \rightarrow \oplus_{k=0}^{\infty} S_{k} / I_{k}$ given by

$$
\pi\left(\left(s_{k}\right)_{k}\right)=\left(s_{k}+I_{k}\right)_{k}
$$

Then

$$
\begin{aligned}
\pi\left(\left(a_{k}\right)_{k}+\left(b_{k}\right)_{k}\right) & =\pi\left(\left(a_{k}+b_{k}\right)_{k}\right) \\
& =\left(a_{k}+b_{k}+I_{k}\right)_{k} \\
& =\left(a_{k}+I_{k}\right)_{k}+\left(b_{k}+I_{k}\right)_{k} \\
& =\pi\left(\left(a_{k}\right)_{k}\right)+\pi\left(\left(b_{k}\right)_{k}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\pi\left(\left(a_{i}\right)_{i} \cdot\left(b_{j}\right)_{j}\right) & =\pi\left(\left(\sum_{i+j=k} a_{i} b_{j}\right)_{k}\right) \\
& =\left(\sum_{i+j=k} a_{i} b_{j}+I_{k}\right)_{k} \\
& =\pi\left(\left(a_{i}\right)_{i}\right) \cdot \pi\left(\left(b_{j}\right)_{j}\right)
\end{aligned}
$$

Note that π is surjective, since any element $\left(s_{k}+I_{k}\right)_{k} \in \oplus_{k=0}^{\infty} S_{k} / I_{k}$ is the image of $\left(s_{k}\right)_{k} \in$ $\oplus_{k=0}^{\infty} S_{k}=S$ under π.

Finally, note that $\left(s_{k}\right)_{k}$ belongs to the kernel of π if and only if

$$
\left(s_{k}+I_{k}\right)_{k}=\left(0+I_{k}\right)_{k}
$$

This occurs if and only if $s_{k} \in I_{k}$ for all k, or equivalently $\left(s_{k}\right)_{k} \in \oplus_{k=0}^{\infty} I_{k}=I$. Therefore $\operatorname{ker}(\pi)=I$.

The first isomorphism theorem that $S / \operatorname{ker}(\pi) \cong \operatorname{image}(\pi)$ then shows that

$$
S / I \cong \oplus_{k=0}^{\infty} S_{k} / I_{k}
$$

Proof of (b). Consider the graded ring $S=\mathbb{Q}[x, y]$ and ideal $I=\left\langle x^{4}, y^{4}\right\rangle$. Note that the monomials of degree d form a basis for S_{d}, so

$$
\left\{x^{5}, x^{4} y, x^{3} y^{2}, x^{2} y^{3}, x y^{4}, y^{5}\right\} \text { is a basis for } S_{5}
$$

We claim that

$$
\left\{x^{5}, x^{4} y, x y^{4}, y^{5}\right\} \text { is a basis for } I_{5}=S_{5} \cap I
$$

Note that each of these elements is a multiple of x^{4} or y^{4}, showing that they belong to I_{5}. Moreover, their linear independence in S_{5} implies their linear independence I_{5}. Elements of I have the form $x^{4} f+y^{4} g$. In particular, expanding the monomial expressions for f and g show that $x^{4} f+y^{4} g$ is a linear combination of monomials of the form $x^{a} y^{b}$ with $a \geq 4$ or $b \geq 4$. Therefore the set above also spans $I_{5}=S_{5} \cap I$.

By the argument above, no polynomial of the form $c_{1} x^{3} y^{2}+c_{2} x^{2} y^{3}$ belongs to I, meaning that $x^{3} y^{2}+I_{5}$ and $x^{2} y^{3}+I_{5}$ are linearly independent in S_{5} / I_{5}. Every element of S_{5} is equivalent to a polynomial of this form, modulo I, which means that $x^{3} y^{2}+I_{5}$ and $x^{2} y^{3}+I_{5}$ also spans S_{5} / I_{5}. Therefore

$$
\left\{x^{3} y^{2}+I_{5}, x^{2} y^{3}+I_{5}\right\} \text { is a basis for } S_{5} / I_{5} .
$$

Problem 2. Let F be any field of characteristic $\operatorname{char}(F) \neq 2$ (so that $-1 \neq 1$). Let V be any vectorspace over F.
(a) [DF Exercise 11.5.13] Prove that $V \otimes_{F} V=\mathcal{S}^{2}(V) \oplus \bigwedge^{2}(V)$, i.e. that every 2-tensor may be written uniquely as a sum of a symmetric and an alternating tensor.
(b) Supposing that V is an n-dimensional vectorspace over F, show the following isomorphisms of F-modules by producing (and checking) explicit isomorphisms:
(i) $V \otimes_{F} V \cong \operatorname{Mat}_{n}(F)$,
(ii) $\mathcal{S}^{2}(V) \cong \operatorname{Sym}_{n}(F)$ where $\operatorname{Sym}_{n}(F)=\left\{A \in \operatorname{Mat}_{n}(F): A=A^{T}\right\}$,
(iii) $\bigwedge^{2}(V) \cong \operatorname{Skew}_{n}(F)$ where $\operatorname{Skew}_{n}(F)=\left\{A \in \operatorname{Mat}_{n}(F): A=-A^{T}\right\}$.

Proof of (b). Consider the map $V \times V \mapsto\{$ symmetric 2-tensors $\} \oplus$ \{antisymmetric 2-tensors $\}$ given by

$$
(v, w) \mapsto\left(\frac{1}{2}(v \otimes w+w \otimes v), \frac{1}{2}(v \otimes w-w \otimes v)\right)
$$

It is straightforward to check that it is bilinear and extends to an F-linear map $\Phi: V \otimes_{F} V \rightarrow$ \{symmetric 2 -tensors $\} \oplus$ \{antisymmetric 2 -tensors $\}$ by

$$
\sum_{i} v_{i} \otimes w_{i} \mapsto\left(\sum_{i} \frac{1}{2}\left(v_{i} \otimes w_{i}+w_{i} \otimes v_{i}\right), \sum_{i} \frac{1}{2}\left(v_{i} \otimes w_{i}-w_{i} \otimes v_{i}\right)\right)
$$

Consider the F-linear map $\Psi:\{$ symmetric 2 -tensors $\} \oplus\{$ antisymmetric 2-tensors $\} \rightarrow V \otimes_{F} V$ given by $\Psi(s, a)=s+a$.

Note that

$$
\Psi\left(\Phi\left(\sum_{i} v_{i} \otimes w_{i}\right)\right)=\Psi\left(\sum_{i} \frac{1}{2}\left(v_{i} \otimes w_{i}+w_{i} \otimes v_{i}\right), \sum_{i} \frac{1}{2}\left(v_{i} \otimes w_{i}-w_{i} \otimes v_{i}\right)\right)=\sum_{i} v_{i} \otimes w_{i}
$$

and so $\Psi \circ \Phi=\mathrm{id}_{V \otimes_{F} V}$.
Note that for any symmetric tensor $s=\sum_{i} v_{i} \otimes w_{i}$

$$
\sum_{i} v_{i} \otimes w_{i}=s=\sigma s=\sum_{i} w_{i} \otimes v_{i}
$$

where $\sigma=(12)$ and so

$$
\Phi(s)=\left(\frac{1}{2}(s+\sigma s), \frac{1}{2}(s-\sigma s)\right)=(s, 0) .
$$

Similarly, for any antisymmetric tensor $a=\sum_{i} v_{i} \otimes w_{i}$

$$
\sum_{i} v_{i} \otimes w_{i}=a=-\sigma a=-\sum_{i} w_{i} \otimes v_{i}
$$

and so

$$
\Phi(a)=\left(\frac{1}{2}(a+\sigma a), \frac{1}{2}(a-\sigma a)\right)=(0, a) .
$$

Then for any symmetric tensor s and antisymmetric tensor a,

$$
\Phi(\Psi(s, a))=\Phi(s+a)=\Phi(s)+\Phi(a)=(s, 0)+(0, a)=(s, a) .
$$

Therefore $\Phi \circ \Psi=\mathrm{id}$.

This shows that $V \otimes_{F} V$ is isomorphism to the direct product \{symmetric 2-tensors\} \oplus \{antisymmetric 2-tensors\}

By Proposition 11.5.40 in the book, the maps $\mathcal{S}^{2}(M)$ is isomorphic to the submodule \{symmetric 2-tensors \} and $\bigwedge^{2}(M)$ is isomorphic to the submodule \{antisymmetric 2-tensors $\}$. Therefore $V \otimes_{F} V$ is isomorphic to $\mathcal{S}^{2}(M) \oplus \bigwedge^{2}(M)$.

Proof of (b). Suppose that V is an n-dimensional vector space over F with basis $\left\{v_{1}, \ldots, v_{n}\right\}$. Then $\left\{v_{i} \otimes v_{j}: 1 \leq i, j \leq n\right\}$ is a basis for $V \otimes_{F} V$. The matrices $\left\{E_{i j}: 1 \leq i, j \leq n\right\}$ is a basis for the space of $n \times n$ matrices where $E_{i j}$ is a matrix with 1 in i th row and j th column and 0's elsewhere. The linear map $L: V \otimes_{F} V \rightarrow \operatorname{Mat}_{n}(F)$ determined by $L\left(v_{i} \otimes v_{j}\right)=E_{i j}$ is an isomorphism.

Note that for $\sigma=(12)$ and $t \in V \otimes_{F} V, L(\sigma t)=L(t)^{T}$ where A^{T} denotes the transpose of $A \in \operatorname{Mat}_{n}(F)$. In particular, $L(t)=L(t)^{T}=L(\sigma t)$ if and only if $t=\sigma t$. Therefore $L(t)$ is a symmetric matrix if and only if the tensor $t \in V \otimes_{F} V$ is symmetric. Therefore L restricts to an isomorphism between \{symmetric 2-tensors\} and $\operatorname{Sym}_{n}(F)$. By Proposition 11.5.40, $\mathcal{S}^{2}(V) \cong\{$ symmetric 2 -tensors $\}$, so $\mathcal{S}^{2}(V) \cong \operatorname{Sym}_{n}(F)$.

Similarly for $t \in V \otimes_{F} V, L(t)=-L(t)^{T}=-L(\sigma t)$ if and only if $t=-\sigma t$. Therefore $L(t)$ is a skew symmetric matrix if and only if the tensor $t \in V \otimes_{F} V$ is antisymmetric. So L restricts to an isomorphism between \{antisymmetric 2-tensors\} and Skew $_{n}(F)$. By Proposition 11.5.40, $\bigwedge^{2}(V) \cong$ \{antisymmetric 2-tensors $\}$, so $\bigwedge^{2}(V) \cong \operatorname{Skew}_{n}(F)$.

