
Math 721 – Homework 4 Solutions

Problem 1 (Graded rings and quotients).

(a) [DF Exercise 11.5.2] Fill in the details for the proof of Proposition 11.5.33. That is,
show that for a graded ideal I of a graded ring S with Ik = I ∩ Sk, the quotient ring
S/I is a graded ring with (S/I)k ∼= Sk/Ik. (Hint: it may be useful to check out the
hint in Exercise 2 and the proof sketch of Proposition 33 of DF §11.5.)

(b) Consider the graded ring S = Q[x, y] and ideal I = 〈x4, y4〉. Give a basis for each of
the following Q-vectorspaces (and justify your answers):

(i) S5,
(ii) I5,
(iii) (S/I)5.

Proof of (a). Let S = ⊕∞k=0Sk be a graded ring and I = ⊕∞k=0Ik be a graded ideal of S, with
Ik = Sk ∩ I. First, we show that ⊕∞k=0Sk/Ik is a graded ring under coordinate-wise addition
and multiplication defined by

(si + Ii)i · (s′j + Ij)j = (
∑
i+j=k

sis
′
j + Ik)k.

In particular, we need to show that this multiplication is well defined. Suppose ri+Ii = si+Ii
and r′j + Ij = s′j + Ij. Then (ri − si)r′j and si(r

′
j − s′j) both belong to Si+j ∩ I = Ii+j. Note

that we can write
rir
′
j = sis

′
j + (ri − si)r′j + si(r

′
j − s′j),

which shows that
rir
′
j + Ii+j = sis

′
j + Ii+j.

Thus the multiplication on ⊕∞k=0Sk/Ik is well-defined.
To see that R = ⊕∞k=0Sk/Ik is a ring with the multiplication, note first that it is immediate

that R is an abelian group under coordinate-wise addition. To check that multiplication is
associative, note that

((ai + Ii)i · (bj + Ij)j) · (ck + Ik)k = (
∑

i+j+k=`

aibjck + I`)` = (ai + Ii)i · ((bj + Ij)j · (ck + Ik)k) .

For distributivity,

((ai + Ii)i + (bi + Ii)i) · (cj + Ij)j = (ai + bi + Ii)i · (cj + Ij)j

= (
∑
i+j=k

(ai + bi)cj + Ik)k

= (
∑
i+j=k

aicj + Ik)k + (
∑
i+j=k

bicj + Ik)k

= ((ai + Ii)i · (cj + Ij)j) + ((bi + Ii)i · (cj + Ij)j) .

Therefore ⊕∞k=0Sk/Ik is a ring. It follows immediately from the definition of multiplication
that it is graded, i.e. (Si/Ii) · (Sj/Ij) ⊆ Si+j/Ii+j.

Now consider the homomorphism π : S → ⊕∞k=0Sk/Ik given by

π
(
(sk)k

)
= (sk + Ik)k



Then

π
(
(ak)k + (bk)k

)
= π

(
(ak + bk)k

)
= (ak + bk + Ik)k

= (ak + Ik)k + (bk + Ik)k

= π
(
(ak)k

)
+π
(
(bk)k

)
and

π
(
(ai)i · (bj)j

)
= π

(
(
∑
i+j=k

aibj)k
)

= (
∑
i+j=k

aibj + Ik)k

= π
(
(ai)i

)
·π
(
(bj)j

)
Note that π is surjective, since any element (sk + Ik)k ∈ ⊕∞k=0Sk/Ik is the image of (sk)k ∈
⊕∞k=0Sk = S under π.

Finally, note that (sk)k belongs to the kernel of π if and only if

(sk + Ik)k = (0 + Ik)k.

This occurs if and only if sk ∈ Ik for all k, or equivalently (sk)k ∈ ⊕∞k=0Ik = I. Therefore
ker(π) = I.

The first isomorphism theorem that S/ ker(π) ∼= image(π) then shows that

S/I ∼= ⊕∞k=0Sk/Ik.

�

Proof of (b). Consider the graded ring S = Q[x, y] and ideal I = 〈x4, y4〉. Note that the
monomials of degree d form a basis for Sd, so

{x5, x4y, x3y2, x2y3, xy4, y5} is a basis for S5.

We claim that

{x5, x4y, xy4, y5} is a basis for I5 = S5 ∩ I.
Note that each of these elements is a multiple of x4 or y4, showing that they belong to I5.
Moreover, their linear independence in S5 implies their linear independence I5. Elements of
I have the form x4f + y4g. In particular, expanding the monomial expressions for f and g
show that x4f + y4g is a linear combination of monomials of the form xayb with a ≥ 4 or
b ≥ 4. Therefore the set above also spans I5 = S5 ∩ I.

By the argument above, no polynomial of the form c1x
3y2 + c2x

2y3 belongs to I, meaning
that x3y2 + I5 and x2y3 + I5 are linearly independent in S5/I5. Every element of S5 is
equivalent to a polynomial of this form, modulo I, which means that x3y2 + I5 and x2y3 + I5
also spans S5/I5. Therefore

{x3y2 + I5, x
2y3 + I5} is a basis for S5/I5.

�



Problem 2. Let F be any field of characteristic char(F ) 6= 2 (so that −1 6= 1). Let V be
any vectorspace over F .

(a) [DF Exercise 11.5.13] Prove that V ⊗F V = S2(V )⊕
∧2(V ), i.e. that every 2-tensor

may be written uniquely as a sum of a symmetric and an alternating tensor.
(b) Supposing that V is an n-dimensional vectorspace over F , show the following iso-

morphisms of F -modules by producing (and checking) explicit isomorphisms:
(i) V ⊗F V ∼= Matn(F ),
(ii) S2(V ) ∼= Symn(F ) where Symn(F ) = {A ∈ Matn(F ) : A = AT},
(iii)

∧2(V ) ∼= Skewn(F ) where Skewn(F ) = {A ∈ Matn(F ) : A = −AT}.

Proof of (b). Consider the map V ×V 7→ {symmetric 2-tensors}⊕{antisymmetric 2-tensors}
given by

(v, w) 7→
(

1

2
(v ⊗ w + w ⊗ v),

1

2
(v ⊗ w − w ⊗ v)

)
It is straightforward to check that it is bilinear and extends to an F -linear map Φ : V ⊗F V →
{symmetric 2-tensors} ⊕ {antisymmetric 2-tensors} by∑

i

vi ⊗ wi 7→

(∑
i

1

2
(vi ⊗ wi + wi ⊗ vi),

∑
i

1

2
(vi ⊗ wi − wi ⊗ vi)

)
Consider the F -linear map Ψ : {symmetric 2-tensors}⊕{antisymmetric 2-tensors} → V ⊗FV
given by Ψ(s, a) = s+ a.

Note that

Ψ(Φ(
∑
i

vi ⊗ wi)) = Ψ

(∑
i

1

2
(vi ⊗ wi + wi ⊗ vi),

∑
i

1

2
(vi ⊗ wi − wi ⊗ vi)

)
=
∑
i

vi ⊗ wi

and so Ψ ◦ Φ = idV⊗FV .
Note that for any symmetric tensor s =

∑
i vi ⊗ wi∑

i

vi ⊗ wi = s = σs =
∑
i

wi ⊗ vi

where σ = (12) and so

Φ(s) =

(
1

2
(s+ σs),

1

2
(s− σs)

)
= (s, 0).

Similarly, for any antisymmetric tensor a =
∑

i vi ⊗ wi∑
i

vi ⊗ wi = a = −σa = −
∑
i

wi ⊗ vi

and so

Φ(a) =

(
1

2
(a+ σa),

1

2
(a− σa)

)
= (0, a).

Then for any symmetric tensor s and antisymmetric tensor a,

Φ(Ψ(s, a)) = Φ(s+ a) = Φ(s) + Φ(a) = (s, 0) + (0, a) = (s, a).

Therefore Φ ◦Ψ = id.



This shows that V ⊗F V is isomorphism to the direct product {symmetric 2-tensors} ⊕
{antisymmetric 2-tensors}

By Proposition 11.5.40 in the book, the maps S2(M) is isomorphic to the submodule
{symmetric 2-tensors} and

∧2(M) is isomorphic to the submodule {antisymmetric 2-tensors}.
Therefore V ⊗F V is isomorphic to S2(M)⊕

∧2(M). �

Proof of (b). Suppose that V is an n-dimensional vector space over F with basis {v1, . . . , vn}.
Then {vi ⊗ vj : 1 ≤ i, j ≤ n} is a basis for V ⊗F V . The matrices {Eij : 1 ≤ i, j ≤ n} is a
basis for the space of n×n matrices where Eij is a matrix with 1 in ith row and jth column
and 0’s elsewhere. The linear map L : V ⊗F V → Matn(F ) determined by L(vi ⊗ vj) = Eij

is an isomorphism.
Note that for σ = (12) and t ∈ V ⊗F V , L(σt) = L(t)T where AT denotes the transpose

of A ∈ Matn(F ). In particular, L(t) = L(t)T = L(σt) if and only if t = σt. Therefore L(t) is
a symmetric matrix if and only if the tensor t ∈ V ⊗F V is symmetric. Therefore L restricts
to an isomorphism between {symmetric 2-tensors} and Symn(F ). By Proposition 11.5.40,
S2(V ) ∼= {symmetric 2-tensors}, so S2(V ) ∼= Symn(F ).

Similarly for t ∈ V ⊗F V , L(t) = −L(t)T = −L(σt) if and only if t = −σt. Therefore
L(t) is a skew symmetric matrix if and only if the tensor t ∈ V ⊗F V is antisymmetric.
So L restricts to an isomorphism between {antisymmetric 2-tensors} and Skewn(F ). By
Proposition 11.5.40,

∧2(V ) ∼= {antisymmetric 2-tensors}, so
∧2(V ) ∼= Skewn(F ). �


