Math 721 - Homework 3 Solutions

Problem 1 (DF Exercise 3, 4, 5). Let X_{1}, X_{2} be R-modules.
(a) Show that $X_{1} \oplus X_{2}$ is projective if and only if X_{1} and X_{2} are projective.
(b) Show that $X_{1} \oplus X_{2}$ is injective if and only if X_{1} and X_{2} are injective.
(c) Show that $X_{1} \oplus X_{2}$ is flat if and only if X_{1} and X_{2} are flat.

Proof of (a). Let X_{1} and X_{2} be R-modules. Note that for for any R-module M,

$$
\Phi_{M}: \operatorname{Hom}_{R}\left(X_{1} \oplus X_{2}, M\right) \rightarrow \operatorname{Hom}_{R}\left(X_{1}, M\right) \oplus \operatorname{Hom}_{R}\left(X_{2}, M\right)
$$

given by the isomorphism $\Phi_{M}(\pi)=\left(\pi_{1}, \pi_{2}\right)$ where $\pi_{1}\left(x_{1}\right)=\pi\left(x_{1}, 0\right)$ and $\pi_{2}\left(x_{2}\right)=\pi\left(0, x_{2}\right)$.
Moreover, for any R-module homomorphism $\psi: B \rightarrow C$, the following diagram commutes:

To check, suppose $\pi \in \operatorname{Hom}_{R}\left(X_{1} \oplus X_{2}, B\right)$ and $\left(x_{1}, x_{2}\right) \in X_{1} \oplus X_{2}$. Let $\left(\pi_{1}, \pi_{2}\right)$ denote $\Phi_{B}(\pi)$.
Then evaluation $\Phi_{C} \circ \psi^{\prime}(\pi)$ at $\left(x_{1}, x_{2}\right) \in X_{1} \oplus X_{2}$ gives
$\Phi_{C}\left(\psi\left(\pi\left(x_{1}, x_{2}\right)\right)=\Phi_{C}\left(\psi\left(\pi_{1}\left(x_{1}\right)+\pi_{2}\left(x_{2}\right)\right)\right)=\Phi_{C}\left(\psi\left(\pi_{1}\left(x_{1}\right)\right)+\psi\left(\pi_{2}\left(x_{2}\right)\right)\right)=\left(\psi \circ \pi_{1}, \psi \circ \pi_{2}\right)\left(x_{1}, x_{2}\right)\right.$.
This is exactly the evaluation of $\left(\psi^{\prime}, \psi^{\prime}\right) \circ \Phi_{B}(\pi)=\left(\psi \circ \pi_{1}, \psi \circ \pi_{2}\right)$ at $\left(x_{1}, x_{2}\right)$. Therefore the diagram commutes.

Now suppose that $0 \rightarrow A \xrightarrow{\varphi} B \xrightarrow{\psi} C \rightarrow 0$ is a short exact sequence. Note that the map

$$
\operatorname{Hom}_{R}\left(X_{1}, B\right) \oplus \operatorname{Hom}_{R}\left(X_{2}, B\right) \xrightarrow{\left(\psi^{\prime}, \psi^{\prime}\right)} \operatorname{Hom}_{R}\left(X_{1}, C\right) \oplus \operatorname{Hom}_{R}\left(X_{2}, C\right)
$$

is surjective if any only if for each $i=1,2$ the $\operatorname{map} \operatorname{Hom}_{R}\left(X_{i}, B\right) \xrightarrow{\psi^{\prime}} \operatorname{Hom}_{R}\left(X_{i}, C\right)$ is surjective. By the isomorphism of sequences above, this shows that the induced map $\operatorname{Hom}_{R}\left(X_{1} \oplus X_{2}, B\right) \xrightarrow{\psi^{\prime}} \operatorname{Hom}_{R}\left(X_{1} \oplus X_{2}, C\right)$ is surjective if and only if for both $i=1,2$, $\operatorname{Hom}_{R}\left(X_{i}, B\right) \xrightarrow{\psi^{\prime}} \operatorname{Hom}_{R}\left(X_{i}, C\right)$ is surjective. Then by definition, $X_{1} \oplus X_{2}$ is projective if and only if both X_{1} and X_{2} are projective.

Proof of (b). Let X_{1} and X_{2} be R-modules, and let π_{i} be the projection map from $X_{1} \oplus X_{2}$ onto X_{i}. Let $\varphi: A \rightarrow B$ be an injective homomorphism.

Suppose first that $X_{1} \oplus X_{2}$ is injective, and choose any $\alpha_{i}: A \rightarrow X_{i}$ for $i=1,2$. Then define $\alpha \in \operatorname{Hom}_{R}\left(A, X_{1} \oplus X_{2}\right)$ by $\alpha(a)=\left(\alpha_{1}(a), \alpha_{2}(a)\right)$. By injectivity of $X_{1} \oplus X_{2}$, we can lift α to a map $\beta \in \operatorname{Hom}_{R}\left(B, X_{1} \oplus X_{2}\right)$ with $\alpha=\beta \circ \varphi$. Then $\alpha_{i}=\pi_{i} \circ \alpha=\pi_{i} \circ \beta \circ \varphi$, so $\pi_{i} \circ \beta \in \operatorname{Hom}_{R}\left(B, X_{i}\right)$ is the desired lift of α_{i} to B. It follows that X_{1} is injective (and similarly so is X_{2}).

Conversely, suppose X_{1} and X_{2} are both injective, and let $\alpha: A \rightarrow X_{1} \oplus X_{2}$. For $i=1,2$, write $\alpha_{i}=\pi_{i} \circ \alpha \in \operatorname{Hom}_{R}\left(A, X_{i}\right)$. By injectivity of X_{i}, we can lift α_{i} to a map $\beta_{i}: B \rightarrow X_{i}$, so that $\alpha_{i}=\beta_{i} \circ \varphi$. Then $\beta=\left(\beta_{1}, \beta_{2}\right) \in \operatorname{Hom}_{R}\left(B, X_{1} \oplus X_{2}\right)$ satisfies $\alpha=\beta \circ \varphi$, so it is a lift of α. Thus $X_{1} \oplus X_{2}$ is injective.

Proof of (c). Let X_{1} and X_{2} be R-modules, and let π_{i} be the projection map from $X_{1} \oplus X_{2}$ onto X_{i}. Let $\varphi: A \rightarrow B$ be any injection.

Recall that for any R-module M, there is an isomorphism $\Phi_{M}:\left(X_{1} \oplus X_{2}\right) \otimes M \rightarrow$ $\left(X_{1} \otimes A\right) \oplus\left(X_{2} \otimes A\right)$ with $\left.\Phi_{M}\left(\left(x_{1}, x_{2}\right) \otimes m\right)\right)=\left(x_{1} \otimes m, x_{2} \otimes m\right)$.

We claim that the following diagram commutes, where the horizontal arrows are induced from φ and the vertical arrows are the isomorphisms Φ_{A} and Φ_{B} :

By linearity, it suffices to check this on simple tensors. Let $\left(x_{1}, x_{2}\right) \otimes a \in\left(X_{1} \oplus X_{2}\right) \otimes A$. Then
$\left.\Phi_{B}((1 \oplus 1) \otimes \varphi)\left(\left(x_{1}, x_{2}\right) \otimes a\right)\right)=\Phi_{B}\left(\left(x_{1}, x_{2}\right) \otimes \varphi(a)\right)=\left(x_{1} \otimes \varphi(a), x_{2} \otimes \varphi(a)\right)=(1 \otimes \varphi, 1 \otimes \varphi)\left(\Phi_{A}\left(x_{1}, x_{2}\right)\right)$.
The top map $\left(X_{1} \oplus X_{2}\right) \otimes A \xrightarrow{(1 \oplus 1) \otimes \varphi}\left(X_{1} \oplus X_{2}\right) \otimes B$ is injective if and only if the bottom map $\left(X_{1} \otimes A\right) \oplus\left(X_{2} \otimes A\right) \xrightarrow{(1 \otimes \varphi, 1 \otimes \varphi)}\left(X_{1} \otimes B\right) \oplus\left(X_{2} \otimes B\right)$. This map is injective if and only if for each $i=1,2,\left(X_{i} \otimes A\right) \xrightarrow{1 \otimes \varphi}\left(X_{i} \otimes B\right)$ is injective. Therefore $X_{1} \oplus X_{2}$ is flat if and only if both X_{1} and X_{2} are flat.

Problem 2 (DF Exercise 14). Let $0 \rightarrow A \xrightarrow{\varphi} B \xrightarrow{\psi} C \rightarrow 0$ be a sequence of R modules.
(a) Show that

$$
0 \rightarrow \operatorname{Hom}_{R}(X, A) \xrightarrow{\varphi^{\prime}} \operatorname{Hom}_{R}(X, B) \xrightarrow{\psi^{\prime}} \operatorname{Hom}_{R}(X, C) \rightarrow 0
$$

is a short exact sequence of abelian groups for all R-modules X if and only if the original sequence is a split short exact sequence. (Hint: consider $X=A$.)
(b) Show that

$$
0 \rightarrow \operatorname{Hom}_{R}(C, X) \xrightarrow{\psi^{\prime}} \operatorname{Hom}_{R}(B, X) \xrightarrow{\varphi^{\prime}} \operatorname{Hom}_{R}(A, X) \rightarrow 0
$$

is a short exact sequence of abelian groups for all R-modules X if and only if the original sequence is a split short exact sequence.

Proof of (a). Suppose that

$$
0 \rightarrow \operatorname{Hom}_{R}(X, A) \xrightarrow{\varphi^{\prime}} \operatorname{Hom}_{R}(X, B) \xrightarrow{\psi^{\prime}} \operatorname{Hom}_{R}(X, C) \rightarrow 0
$$

is exact for every R-module X and consider the module $X=R$. For every R-module M, $\Phi_{M}: \operatorname{Hom}_{R}(X, M) \rightarrow M$ given by $\Phi(f)=f(1)$ is an isomorphism. For any $f \in \operatorname{Hom}_{R}(R, A)$,

$$
\Phi_{B}\left(\varphi^{\prime}(f)\right)=\varphi^{\prime}(f)(1)=\varphi(f(1))=\varphi\left(\Phi_{A}(f)\right)
$$

A similar argument for ψ shows that the following diagram commutes:

Since $\Phi_{A}, \Phi_{B}, \Phi_{C}$ are isomorphisms and the top row is an exact sequence, the bottom row is as well.

Next, consider the module $X=C$ and consider the homomorphism $\operatorname{id}_{C} \in \operatorname{Hom}_{R}(C, C)$. Because ψ^{\prime} is surjective, there exists $\mu \in \operatorname{Hom}_{R}(C, B)$ for which $\operatorname{id}_{C}=\psi^{\prime}(\mu)=\psi \circ \mu$. This shows that the exact sequence $0 \rightarrow A \xrightarrow{\varphi} B \xrightarrow{\psi} C \rightarrow 0$ splits.

Conversely, suppose that the sequence $0 \rightarrow A \xrightarrow{\varphi} B \xrightarrow{\psi} C \rightarrow 0$ splits, meaning that $\mu \in$ $\operatorname{Hom}_{R}(C, B)$ for which $\mathrm{id}_{C}=\psi \circ \mu$. Suppose that X is an R-module and $g \in \operatorname{Hom}_{R}(X, C)$. Then $f=\mu \circ g$ belongs to $\operatorname{Hom}_{R}(X, B)$ and $\psi \circ f=g$. Therefore the map $\psi^{\prime}: \operatorname{Hom}_{R}(X, B) \rightarrow$ $\operatorname{Hom}_{R}(X, C)$ is surjective, making the sequence

$$
0 \rightarrow \operatorname{Hom}_{R}(X, A) \xrightarrow{\varphi^{\prime}} \operatorname{Hom}_{R}(X, B) \xrightarrow{\psi^{\prime}} \operatorname{Hom}_{R}(X, C) \rightarrow 0
$$

is exact.
Proof of (b). Suppose that

$$
0 \rightarrow \operatorname{Hom}_{R}(C, X) \xrightarrow{\psi^{\prime}} \operatorname{Hom}_{R}(B, X) \xrightarrow{\varphi^{\prime}} \operatorname{Hom}_{R}(A, X) \rightarrow 0
$$

is exact for every R-module X.
(ψ surjective) To see ψ is surjective: let $X=C / \psi(B)$ and let $\pi: C \rightarrow C / \psi(B)$ be the corresponding quotient map $\pi(c)=c+\psi(B)$. By assumption, we have that $\operatorname{Hom}_{R}(C, X) \xrightarrow{\psi^{\prime}}$ $\operatorname{Hom}_{R}(B, X)$ is injective. Since $\pi(\psi(b))=0$ for all $b \in B$, we see that $\psi^{\prime}(\pi)=\pi \circ \psi=0$. By injectivity of ψ^{\prime}, we must have $\pi=0$ and hence $C / \psi(B)=\{0\}$, giving $C=\psi(B)$.
$(\operatorname{im}(\varphi) \subseteq \operatorname{ker}(\psi))$ By assumption, $\varphi^{\prime} \circ \psi^{\prime}=0$, that is, $f \circ \psi \circ \varphi=0 \in \operatorname{Hom}_{R}(A, X)$ for all $f \in \operatorname{Hom}_{R}(C, X)$. Taking $X=C$ and $f=\operatorname{id}_{C}$ then gives $\psi \circ \varphi=0$.
$(\operatorname{ker}(\psi) \subseteq \operatorname{im}(\varphi))$ Let $X=B / \varphi(A)$ and let $\pi \in \operatorname{Hom}_{R}(B, X)$ be the corresponding quotient map $\pi(b)=b+\varphi(A)$. Then $\pi \circ \varphi=\varphi^{\prime}(\pi)=0$, so by assumption, there must exist some element $\sigma \in \operatorname{Hom}_{R}(C, X)$ such that $\psi^{\prime}(\sigma)=\sigma \circ \psi=\pi$. Then $\operatorname{im}(\varphi)=\operatorname{ker}(\pi)$ must contain the kernel of ψ.
(φ injective) Let $X=A$. The map $\varphi^{\prime}: \operatorname{Hom}_{R}(B, A) \rightarrow \operatorname{Hom}_{R}(A, A)$ is surjective. In particular, id_{A} lies in the image of φ^{\prime}, so there exists $\mu \in \operatorname{Hom}_{R}(B, A)$ such that $\operatorname{id}_{A}=\varphi^{\prime}(\mu)=\mu \circ \varphi$. It follows that φ must be injective, and by Proposition 10.5.26, the exact sequence $0 \rightarrow A \xrightarrow{\varphi} B \xrightarrow{\psi} C \rightarrow 0$ splits.

Conversely, suppose $0 \rightarrow A \xrightarrow{\varphi} B \xrightarrow{\psi} C \rightarrow 0$ is a split exact sequence. By Theorem 10.5.28, the sequence $0 \rightarrow \operatorname{Hom}_{R}(C, X) \xrightarrow{\psi^{\prime}} \operatorname{Hom}_{R}(B, X) \xrightarrow{\varphi^{\prime}} \operatorname{Hom}_{R}(A, X)$ is exact. It suffices to show that φ^{\prime} is surjective. Since the sequence above splits, by Proposition 10.5.26, there exists $\lambda \in \operatorname{Hom}_{R}(B, A)$ so that $\operatorname{id}_{A}=\lambda \circ \varphi$. For any $g \in \operatorname{Hom}_{R}(A, X)$, let $f=g \circ \lambda \in \operatorname{Hom}_{R}(B, X)$.

Since $\varphi^{\prime}(f)=f \circ \varphi=g \circ \lambda \circ \varphi=g$, it follows that φ^{\prime} is surjective, so

$$
0 \rightarrow \operatorname{Hom}_{R}(C, X) \xrightarrow{\psi^{\prime}} \operatorname{Hom}_{R}(B, X) \xrightarrow{\varphi^{\prime}} \operatorname{Hom}_{R}(A, X) \rightarrow 0
$$

must be exact.

