Math 721 – Homework 3 Solutions

Problem 1 (DF Exercise 3, 4, 5). Let X_1, X_2 be *R*-modules.

(a) Show that $X_1 \oplus X_2$ is projective if and only if X_1 and X_2 are projective.

- (b) Show that $X_1 \oplus X_2$ is injective if and only if X_1 and X_2 are injective.
- (c) Show that $X_1 \oplus X_2$ is flat if and only if X_1 and X_2 are flat.

Proof of (a). Let X_1 and X_2 be *R*-modules. Note that for for any *R*-module M,

 $\Phi_M : \operatorname{Hom}_R(X_1 \oplus X_2, M) \to \operatorname{Hom}_R(X_1, M) \oplus \operatorname{Hom}_R(X_2, M),$

given by the isomorphism $\Phi_M(\pi) = (\pi_1, \pi_2)$ where $\pi_1(x_1) = \pi(x_1, 0)$ and $\pi_2(x_2) = \pi(0, x_2)$. Moreover, for any *R*-module homomorphism $\psi : B \to C$, the following diagram commutes:

To check, suppose $\pi \in \text{Hom}_R(X_1 \oplus X_2, B)$ and $(x_1, x_2) \in X_1 \oplus X_2$. Let (π_1, π_2) denote $\Phi_B(\pi)$. Then evaluation $\Phi_C \circ \psi'(\pi)$ at $(x_1, x_2) \in X_1 \oplus X_2$ gives

$$\Phi_C(\psi(\pi(x_1, x_2)) = \Phi_C(\psi(\pi_1(x_1) + \pi_2(x_2))) = \Phi_C(\psi(\pi_1(x_1)) + \psi(\pi_2(x_2))) = (\psi \circ \pi_1, \psi \circ \pi_2)(x_1, x_2)$$

This is exactly the evaluation of $(\psi', \psi') \circ \Phi_B(\pi) = (\psi \circ \pi_1, \psi \circ \pi_2)$ at (x_1, x_2) . Therefore the diagram commutes.

Now suppose that $0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$ is a short exact sequence. Note that the map

$$\operatorname{Hom}_R(X_1, B) \oplus \operatorname{Hom}_R(X_2, B) \xrightarrow{(\psi', \psi')} \operatorname{Hom}_R(X_1, C) \oplus \operatorname{Hom}_R(X_2, C)$$

is surjective if any only if for each i = 1, 2 the map $\operatorname{Hom}_R(X_i, B) \xrightarrow{\psi'} \operatorname{Hom}_R(X_i, C)$ is surjective. By the isomorphism of sequences above, this shows that the induced map $\operatorname{Hom}_R(X_1 \oplus X_2, B) \xrightarrow{\psi'} \operatorname{Hom}_R(X_1 \oplus X_2, C)$ is surjective if and only if for both i = 1, 2, $\operatorname{Hom}_R(X_i, B) \xrightarrow{\psi'} \operatorname{Hom}_R(X_i, C)$ is surjective. Then by definition, $X_1 \oplus X_2$ is projective if and only if both X_1 and X_2 are projective. \Box

Proof of (b). Let X_1 and X_2 be *R*-modules, and let π_i be the projection map from $X_1 \oplus X_2$ onto X_i . Let $\varphi \colon A \to B$ be an injective homomorphism.

Suppose first that $X_1 \oplus X_2$ is injective, and choose any $\alpha_i \colon A \to X_i$ for i = 1, 2. Then define $\alpha \in \operatorname{Hom}_R(A, X_1 \oplus X_2)$ by $\alpha(a) = (\alpha_1(a), \alpha_2(a))$. By injectivity of $X_1 \oplus X_2$, we can lift α to a map $\beta \in \operatorname{Hom}_R(B, X_1 \oplus X_2)$ with $\alpha = \beta \circ \varphi$. Then $\alpha_i = \pi_i \circ \alpha = \pi_i \circ \beta \circ \varphi$, so $\pi_i \circ \beta \in \operatorname{Hom}_R(B, X_i)$ is the desired lift of α_i to B. It follows that X_1 is injective (and similarly so is X_2).

Conversely, suppose X_1 and X_2 are both injective, and let $\alpha \colon A \to X_1 \oplus X_2$. For i = 1, 2, write $\alpha_i = \pi_i \circ \alpha \in \operatorname{Hom}_R(A, X_i)$. By injectivity of X_i , we can lift α_i to a map $\beta_i \colon B \to X_i$, so that $\alpha_i = \beta_i \circ \varphi$. Then $\beta = (\beta_1, \beta_2) \in \operatorname{Hom}_R(B, X_1 \oplus X_2)$ satisfies $\alpha = \beta \circ \varphi$, so it is a lift of α . Thus $X_1 \oplus X_2$ is injective. *Proof of (c).* Let X_1 and X_2 be *R*-modules, and let π_i be the projection map from $X_1 \oplus X_2$ onto X_i . Let $\varphi \colon A \to B$ be any injection.

Recall that for any *R*-module *M*, there is an isomorphism $\Phi_M : (X_1 \oplus X_2) \otimes M \to (X_1 \otimes A) \oplus (X_2 \otimes A)$ with $\Phi_M((x_1, x_2) \otimes m)) = (x_1 \otimes m, x_2 \otimes m).$

We claim that the following diagram commutes, where the horizontal arrows are induced from φ and the vertical arrows are the isomorphisms Φ_A and Φ_B :

By linearity, it suffices to check this on simple tensors. Let $(x_1, x_2) \otimes a \in (X_1 \oplus X_2) \otimes A$. Then

$$\Phi_B((1\oplus 1)\otimes\varphi)((x_1, x_2)\otimes a)) = \Phi_B((x_1, x_2)\otimes\varphi(a)) = (x_1\otimes\varphi(a), x_2\otimes\varphi(a)) = (1\otimes\varphi, 1\otimes\varphi)(\Phi_A(x_1, x_2)).$$

The top map $(X_1 \oplus X_2) \otimes A \xrightarrow{(1 \oplus 1) \otimes \varphi} (X_1 \oplus X_2) \otimes B$ is injective if and only if the bottom map $(X_1 \otimes A) \oplus (X_2 \otimes A) \xrightarrow{(1 \otimes \varphi, 1 \otimes \varphi)} (X_1 \otimes B) \oplus (X_2 \otimes B)$. This map is injective if and only if for each $i = 1, 2, (X_i \otimes A) \xrightarrow{1 \otimes \varphi} (X_i \otimes B)$ is injective. Therefore $X_1 \oplus X_2$ is flat if and only if both X_1 and X_2 are flat.

Problem 2 (DF Exercise 14). Let $0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$ be a sequence of R modules.

(a) Show that

$$0 \to \operatorname{Hom}_{R}(X, A) \xrightarrow{\varphi'} \operatorname{Hom}_{R}(X, B) \xrightarrow{\psi'} \operatorname{Hom}_{R}(X, C) \to 0$$

is a short exact sequence of abelian groups for all *R*-modules X if and only if the original sequence is a split short exact sequence. (Hint: consider X = A.)

(b) Show that

$$0 \to \operatorname{Hom}_{R}(C, X) \xrightarrow{\psi'} \operatorname{Hom}_{R}(B, X) \xrightarrow{\varphi'} \operatorname{Hom}_{R}(A, X) \to 0$$

is a short exact sequence of abelian groups for all R-modules X if and only if the original sequence is a split short exact sequence.

Proof of (a). Suppose that

$$0 \to \operatorname{Hom}_{R}(X, A) \xrightarrow{\varphi'} \operatorname{Hom}_{R}(X, B) \xrightarrow{\psi'} \operatorname{Hom}_{R}(X, C) \to 0$$

is exact for every *R*-module *X* and consider the module X = R. For every *R*-module *M*, $\Phi_M : \operatorname{Hom}_R(X, M) \to M$ given by $\Phi(f) = f(1)$ is an isomorphism. For any $f \in \operatorname{Hom}_R(R, A)$,

$$\Phi_B(\varphi'(f)) = \varphi'(f)(1) = \varphi(f(1)) = \varphi(\Phi_A(f)).$$

A similar argument for ψ shows that the following diagram commutes:

Since Φ_A, Φ_B, Φ_C are isomorphisms and the top row is an exact sequence, the bottom row is as well.

Next, consider the module X = C and consider the homomorphism $\mathrm{id}_C \in \mathrm{Hom}_R(C, C)$. Because ψ' is surjective, there exists $\mu \in \mathrm{Hom}_R(C, B)$ for which $\mathrm{id}_C = \psi'(\mu) = \psi \circ \mu$. This shows that the exact sequence $0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$ splits.

Conversely, suppose that the sequence $0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$ splits, meaning that $\mu \in \text{Hom}_R(C, B)$ for which $\text{id}_C = \psi \circ \mu$. Suppose that X is an R-module and $g \in \text{Hom}_R(X, C)$. Then $f = \mu \circ g$ belongs to $\text{Hom}_R(X, B)$ and $\psi \circ f = g$. Therefore the map $\psi' : \text{Hom}_R(X, B) \to \text{Hom}_R(X, C)$ is surjective, making the sequence

$$0 \to \operatorname{Hom}_R(X, A) \xrightarrow{\varphi'} \operatorname{Hom}_R(X, B) \xrightarrow{\psi'} \operatorname{Hom}_R(X, C) \to 0$$

is exact.

Proof of (b). Suppose that

$$0 \to \operatorname{Hom}_{R}(C, X) \xrightarrow{\psi'} \operatorname{Hom}_{R}(B, X) \xrightarrow{\varphi'} \operatorname{Hom}_{R}(A, X) \to 0$$

is exact for every R-module X.

 $(\psi \text{ surjective})$ To see ψ is surjective: let $X = C/\psi(B)$ and let $\pi: C \to C/\psi(B)$ be the corresponding quotient map $\pi(c) = c + \psi(B)$. By assumption, we have that $\operatorname{Hom}_R(C, X) \xrightarrow{\psi'} \operatorname{Hom}_R(B, X)$ is injective. Since $\pi(\psi(b)) = 0$ for all $b \in B$, we see that $\psi'(\pi) = \pi \circ \psi = 0$. By injectivity of ψ' , we must have $\pi = 0$ and hence $C/\psi(B) = \{0\}$, giving $C = \psi(B)$.

 $(\operatorname{im}(\varphi) \subseteq \operatorname{ker}(\psi))$ By assumption, $\varphi' \circ \psi' = 0$, that is, $f \circ \psi \circ \varphi = 0 \in \operatorname{Hom}_R(A, X)$ for all $f \in \operatorname{Hom}_R(C, X)$. Taking X = C and $f = \operatorname{id}_C$ then gives $\psi \circ \varphi = 0$.

 $(\ker(\psi) \subseteq \operatorname{im}(\varphi))$ Let $X = B/\varphi(A)$ and let $\pi \in \operatorname{Hom}_R(B, X)$ be the corresponding quotient map $\pi(b) = b + \varphi(A)$. Then $\pi \circ \varphi = \varphi'(\pi) = 0$, so by assumption, there must exist some element $\sigma \in \operatorname{Hom}_R(C, X)$ such that $\psi'(\sigma) = \sigma \circ \psi = \pi$. Then $\operatorname{im}(\varphi) = \ker(\pi)$ must contain the kernel of ψ .

 $(\varphi \text{ injective})$ Let X = A. The map $\varphi' \colon \operatorname{Hom}_R(B, A) \to \operatorname{Hom}_R(A, A)$ is surjective. In particular, id_A lies in the image of φ' , so there exists $\mu \in \operatorname{Hom}_R(B, A)$ such that $\operatorname{id}_A = \varphi'(\mu) = \mu \circ \varphi$. It follows that φ must be injective, and by Proposition 10.5.26, the exact sequence $0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$ splits.

Conversely, suppose $0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$ is a split exact sequence. By Theorem 10.5.28, the sequence $0 \to \operatorname{Hom}_R(C, X) \xrightarrow{\psi'} \operatorname{Hom}_R(B, X) \xrightarrow{\varphi'} \operatorname{Hom}_R(A, X)$ is exact. It suffices to show that φ' is surjective. Since the sequence above splits, by Proposition 10.5.26, there exists $\lambda \in \operatorname{Hom}_R(B, A)$ so that $\operatorname{id}_A = \lambda \circ \varphi$. For any $g \in \operatorname{Hom}_R(A, X)$, let $f = g \circ \lambda \in \operatorname{Hom}_R(B, X)$.

Since $\varphi'(f) = f \circ \varphi = g \circ \lambda \circ \varphi = g$, it follows that φ' is surjective, so $0 \to \operatorname{Hom}_R(C, X) \xrightarrow{\psi'} \operatorname{Hom}_R(B, X) \xrightarrow{\varphi'} \operatorname{Hom}_R(A, X) \to 0$

must be exact.