Math 721 — Homework 2 Solutions

Problem 1 (DF Exercise 16 +). Suppose that R is a commutative ring with 1 # 0 and let
I and J be ideals of R, so R/I and R/J are naturally R-modules.

(a) Prove that every element of R/I ®p R/J can be written as a simple tensor
(1 mod I)® (r mod J).

(b) Prove that there is an R-module isomorphism R/I ®r R/J — R/(I + J) mapping
(r mod I) ® (s mod J) to (rs mod I + J).

(c) Give an example of R, I, J and an element in (R/I)*®z(R/J)? that cannot be written
as a simple tensor. Make sure to justify your answer.

Proof of (a). Consider an element Y ,_ (ax + I) ® (by + J) where ay, by, € R. Using the
relations on tensors, we find that
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S+ D@ be+J)=> ar(l+1)® (b +J)
= zn:(l + 1)@ ap(byp + J)

n

="+ 1) @ (agby + J)
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where r =Y, ayby € R. O
Proof of (b). Consider the map ¢ : (R/I) x (R/J) — R/(I + J) given by
pla+I1,b+J)=ab+1+J.
First let us check that ¢ is well-defined. If a+ 1 =c+Tand b+ J =d+ J,thena—ce [
and b —d € J. Then
ab—cd=(a—c)b+cb—d) eI+
showing that
ola+1,b+J)=ab+I1+J=cd+I1+J=p(c+I,d+J).
The map ¢ is bilinear. To see this note, let a,b,c,d,r,72 € R. We can check that
o(ri(a+1)+ryc+1),b+J)=p(ria+rc+ 1,0+ J)
= (ria + roc)b
= riab + roch

=ripla+ 1,b+J)+mrp(c+ 1,0+ J)



Therefore there is an R-module homomorphism ¢ : R/I ®r R/J — R/(I + J) with
Sla+1,b+J)=ab+ 1+ J.
Note that & is surjective because for any r € R, ®((1+1)@(r+J)) =r+I1+J € R/(I+J).
To see that @ is injective, suppose that some element X € R/I ®r R/J belongs to the
kernel of ®. By part (a), we can write X = (1 + 1) ® (r + J) for some r € R. Then
0=pl+)®((r+J) =r+1+J. Therefore r € I + J. In particular, there exist
acl,be Jwithr=a+b. Then

X=1+DHeor+)=01+1)@(a+b+J)
1+1)®(a+J)
1+ ®a(l+J)
I
)

al+1)®(1+J)
=(a+1)®@(1+J)
=0+ ®(1+J)
=0-(0+)®((1+J)

= ORr/10rR/J

U

Proof of (¢). Consider R = Q and I = J = {0}. Then R/I = R/J = Q and Q? ® Q? is the
four dimensional Q-vectorspace

Q*®0Q? = {ae1 ® e1 +bey ®es +cea ®ey +dey ey i a,b,e,d € Q}
Simple tensors have the form
(vie1 + vaen) ® (wieg + waeg) = Viwie; ® €1 + vViwge; ® eg + Vawr ey @ e + Vawzes & es.
Organizing the coefficients into a 2 x 2 matrix, we find that
(0= Comn o) = ()
In particular, the set of simple tensors in Q? ® Q? is given by

{(161®€1+b€1®€2+€62®61+d62®622det (CCL Z) :0}.

This shows the tensor e; ® e; + €3 ® ey (corresponding to (a,b,c,d) = (1,0,0,1)) cannot be
written as a simple tensor. 0



Definition. Let R be a commutative ring with identity 1z # 0. An R-algebra is a ring A
with identity 14 # 0 and a ring homomorphism f: R — A with

(1) f(1g) =14 and

(2) f(rya=af(r)forallT € R and a € A.

In particular, if R is a subring of A contained in its center with 1x = 14, then A is an
R-algebra with the map f: R — A given by f(r) =

Problem 2. Let R, A, B be rings with R contained in the center of A and the center of B
and with coinciding (nonzero) multiplicative identities 1 = 14 = 15 # 0.

(a) Show that the multiplication (a ® b)(a’ ® b') = aa’ ® bb' makes A @ B into an
R-algebra. (In the proof of Proposition 10.4.21, it is shown that this multiplication
is well-defined. This completes the proof of the statement of this proposition.)

(b) Show that Z[i] ®z R = C as rings.

Proof of (a). Note that we already know that A ®g B is group under + and an R-module.
We claim that it is a ring with identity 1®1. As noted in the book, the map AXx Bx Ax B —
A ®p B given by (a,b,a’,V) — (aa’ ® bb') is R-bilinear, and so extends R-linearly to a map
®: ARr BXx A®r B — A®p B with &((a ®b),(d’ ®V')) = ad’ @ bV,
(Associativity of multiplication) First, let us check this on simple tenors: For ay,as,a3 € A
and bl,bg,bg S B,
((a1 (%9 bl) . (&2 0% bg))'(ag & bg) = (alag X ble) . (Clg X bg)
= 10203 X blbgbg
= (a1 ® b1) - (azas @ bybs)
= (al X bl) . ((CZQ X bz) . (ag X bg))
Now suppose » 7, Zj S;j, >, tr are tensors in A ®p B where each 7, s, are simple
tensors. Associativity of simple tensors shows that ®(®(ry, s;),tx)= ®(r;, ®(s;,tx)). Then
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= Z (I)(’T’Z', @(Sj, tk))
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=0 ZT“Z@ s],tk
OB Z%Ztk

(Distributivity of multiplication over addition) This follows from the bilinearity of the
multiplication operator ®. For any tensors r,s,t € A Qg B,

O (r+s,t)=(r,t)+ P(s,t) and D (r,s+t)=D(r,s) + O(r, ).



(Indentity) We claim that 1 ® 1 is the identity in A ® g B, where 1 denotes the common
identity of R, A, and B. Note that

(1®1)- (iaz‘@)bi) :zn:(1®1)'<ai®bi)

i=1 i=1

=1

:Zai®bi

=1

=1

n

= Z(az@bz') (1®1)

i=1

(Zm@b) 1e1)

(R-algebra) Consider the function f : R — A ®g B given by f(r) = r ® 1. Note that
f(1) =1®1 = lag,p. Furthermore, we can check that f is a ring homomorphism. For any
r,s € R,

fr+s)=r)+(s®1)=r+s)®@1=f(r)+ f(s)
and
flres)=(r@l) (s®@l)=(r-s)@1=f(r) f(s).
Finally we can check that the image of f belongs to the center of A ®p B.

Zak@)bk— rel (Zak@)bk):Z( )(ak@bk’)

= (e @b)(rel)

k=1

k=1

This shows that A ®r B is as R-algebra. O



Proof of (b). Consider the map ¢ : Z[i] x R — C defined by ¢(z,r) = rz. We claim that ¢
is Z-bilinear. To see this, suppose z,w € Z[i| and r, s € R. Then

oz4+w,r)=r(z+w) =rz+rw=p(z,r)+ e(w,r)
and
olz,r+38)=(r+s)z=rz+sz=p(z,r) + ¢(zs).
This extends to a unique Z-module homomorphism ¢ : Z[i| ®z R — C with ®(z @ r) = rz.
Now consider the map ¥ : C — Z[i] @z R given by ¥(a+ib) = 1®a+i®b. We claim that

this is also a Z-module homomorphism (i.e. group homomorphism). To check, note that for
a,b,c,d € R,

U(a+ib+c+id) =1@(a+c)+i® (b+d) = 1Qa+1@c+i@b+i®d = ¥(a+1ib) + ¥ (c+id).
Note that ® o ¥ = idc:
P(V(a+ib) =P(1®a+i®b) =P(1®a)+ P ®@b) =a+ib.
Also ¥ o ® = idgjg,r. To see this, note that for a;,b; € Z, r; € R,

‘P(‘P(Z(ag‘ +1b;) @1;)) = ‘I’(Z ®((a; + ibj) ®1y))

] - xp(i ri(a; + ib;))

- \p((]z rjag) +i(3_rib;))
—1® (]Z ria;) +¢<JX>(Z rib;)
- Z(a;@@ r;) + Z(ibjjéwj)
o

j
Therefore ® gives a Z-module isomorphism between Z[i] ®z R and C whose inverse is W. [



