Math 721 - Homework 2 Solutions

Problem $1($ DF Exercise $16+)$. Suppose that R is a commutative ring with $1 \neq 0$ and let I and J be ideals of R, so R / I and R / J are naturally R-modules.
(a) Prove that every element of $R / I \otimes_{R} R / J$ can be written as a simple tensor $(1 \bmod I) \otimes(r \bmod J)$.
(b) Prove that there is an R-module isomorphism $R / I \otimes_{R} R / J \rightarrow R /(I+J)$ mapping $(r \bmod I) \otimes(s \bmod J)$ to $($ rs $\bmod I+J)$.
(c) Give an example of R, I, J and an element in $(R / I)^{2} \otimes_{R}(R / J)^{2}$ that cannot be written as a simple tensor. Make sure to justify your answer.

Proof of (a). Consider an element $\sum_{k=1}^{n}\left(a_{k}+I\right) \otimes\left(b_{k}+J\right)$ where $a_{k}, b_{k} \in R$. Using the relations on tensors, we find that

$$
\begin{aligned}
\sum_{k=1}^{n}\left(a_{k}+I\right) \otimes\left(b_{k}+J\right) & =\sum_{k=1}^{n} a_{k}(1+I) \otimes\left(b_{k}+J\right) \\
& =\sum_{k=1}^{n}(1+I) \otimes a_{k}\left(b_{k}+J\right) \\
& =\sum_{k=1}^{n}(1+I) \otimes\left(a_{k} b_{k}+J\right) \\
& =(1+I) \otimes\left(\sum_{k=1}^{n} a_{k} b_{k}+J\right) \\
& =(1+I) \otimes(r+J)
\end{aligned}
$$

where $r=\sum_{k=1}^{n} a_{k} b_{k} \in R$.
Proof of (b). Consider the map $\varphi:(R / I) \times(R / J) \rightarrow R /(I+J)$ given by

$$
\varphi(a+I, b+J)=a b+I+J
$$

First let us check that φ is well-defined. If $a+I=c+I$ and $b+J=d+J$, then $a-c \in I$ and $b-d \in J$. Then

$$
a b-c d=(a-c) b+c(b-d) \in I+J,
$$

showing that

$$
\varphi(a+I, b+J)=a b+I+J=c d+I+J=\varphi(c+I, d+J)
$$

The map φ is bilinear. To see this note, let $a, b, c, d, r_{1}, r_{2} \in R$. We can check that

$$
\begin{aligned}
\varphi\left(r_{1}(a+I)+r_{2}(c+I), b+J\right) & =\varphi\left(r_{1} a+r_{2} c+I, b+J\right) \\
& =\left(r_{1} a+r_{2} c\right) b \\
& =r_{1} a b+r_{2} c b \\
& =r_{1} \varphi(a+I, b+J)+r_{2} \varphi(c+I, b+J)
\end{aligned}
$$

Therefore there is an R-module homomorphism $\Phi: R / I \otimes_{R} R / J \rightarrow R /(I+J)$ with $\Phi(a+I, b+J)=a b+I+J$.

Note that Φ is surjective because for any $r \in R, \Phi((1+I) \otimes(r+J))=r+I+J \in R /(I+J)$.
To see that Φ is injective, suppose that some element $X \in R / I \otimes_{R} R / J$ belongs to the kernel of Φ. By part (a), we can write $X=(1+I) \otimes(r+J)$ for some $r \in R$. Then $0=\varphi((1+I) \otimes(r+J))=r+I+J$. Therefore $r \in I+J$. In particular, there exist $a \in I, b \in J$ with $r=a+b$. Then

$$
\begin{aligned}
X=(1+I) \otimes(r+J) & =(1+I) \otimes(a+b+J) \\
& =(1+I) \otimes(a+J) \\
& =(1+I) \otimes a(1+J) \\
& =a(1+I) \otimes(1+J) \\
& =(a+I) \otimes(1+J) \\
& =(0+I) \otimes(1+J) \\
& =0 \cdot(0+I) \otimes(1+J) \\
& =0_{R / I \otimes_{R} R / J}
\end{aligned}
$$

Proof of (c). Consider $R=\mathbb{Q}$ and $I=J=\{0\}$. Then $R / I=R / J=\mathbb{Q}$ and $\mathbb{Q}^{2} \otimes \mathbb{Q}^{2}$ is the four dimensional \mathbb{Q}-vectorspace

$$
\mathbb{Q}^{2} \otimes \mathbb{Q}^{2}=\left\{a e_{1} \otimes e_{1}+b e_{1} \otimes e_{2}+c e_{2} \otimes e_{1}+d e_{2} \otimes e_{2}: a, b, c, d \in \mathbb{Q}\right\}
$$

Simple tensors have the form

$$
\left(v_{1} e_{1}+v_{2} e_{2}\right) \otimes\left(w_{1} e_{1}+w_{2} e_{2}\right)=v_{1} w_{1} e_{1} \otimes e_{1}+v_{1} w_{2} e_{1} \otimes e_{2}+v_{2} w_{1} e_{2} \otimes e_{1}+v_{2} w_{2} e_{2} \otimes e_{2}
$$

Organizing the coefficients into a 2×2 matrix, we find that

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
v_{1} w_{1} & v_{1} w_{2} \\
v_{2} w_{1} & v_{2} w_{2}
\end{array}\right)=\binom{v_{1}}{v_{2}}\left(\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right) .
$$

In particular, the set of simple tensors in $\mathbb{Q}^{2} \otimes \mathbb{Q}^{2}$ is given by

$$
\left\{a e_{1} \otimes e_{1}+b e_{1} \otimes e_{2}+c e_{2} \otimes e_{1}+d e_{2} \otimes e_{2}: \operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=0\right\} .
$$

This shows the tensor $e_{1} \otimes e_{1}+e_{2} \otimes e_{2}$ (corresponding to $\left.(a, b, c, d)=(1,0,0,1)\right)$ cannot be written as a simple tensor.

Definition. Let R be a commutative ring with identity $1_{R} \neq 0$. An R-algebra is a ring A with identity $1_{A} \neq 0$ and a ring homomorphism $f: R \rightarrow A$ with
(1) $f\left(1_{R}\right)=1_{A}$ and
(2) $f(r) a=a f(r)$ for all $r \in R$ and $a \in A$.

In particular, if R is a subring of A contained in its center with $1_{R}=1_{A}$, then A is an R-algebra with the map $f: R \rightarrow A$ given by $f(r)=r$.

Problem 2. Let R, A, B be rings with R contained in the center of A and the center of B and with coinciding (nonzero) multiplicative identities $1_{R}=1_{A}=1_{B} \neq 0$.
(a) Show that the multiplication $(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)=a a^{\prime} \otimes b b^{\prime}$ makes $A \otimes_{R} B$ into an R-algebra. (In the proof of Proposition 10.4.21, it is shown that this multiplication is well-defined. This completes the proof of the statement of this proposition.)
(b) Show that $\mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{C}$ as rings.

Proof of (a). Note that we already know that $A \otimes_{R} B$ is group under + and an R-module. We claim that it is a ring with identity $1 \otimes 1$. As noted in the book, the map $A \times B \times A \times B \rightarrow$ $A \otimes_{R} B$ given by $\left(a, b, a^{\prime}, b^{\prime}\right) \mapsto\left(a a^{\prime} \otimes b b^{\prime}\right)$ is R-bilinear, and so extends R-linearly to a map $\Phi: A \otimes_{R} B \times A \otimes_{R} B \rightarrow A \otimes_{R} B$ with $\Phi\left((a \otimes b),\left(a^{\prime} \otimes b^{\prime}\right)\right)=a a^{\prime} \otimes b b^{\prime}$,
(Associativity of multiplication) First, let us check this on simple tenors: For $a_{1}, a_{2}, a_{3} \in A$ and $b_{1}, b_{2}, b_{3} \in B$,

$$
\begin{aligned}
\left(\left(a_{1} \otimes b_{1}\right) \cdot\left(a_{2} \otimes b_{2}\right)\right) \cdot\left(a_{3} \otimes b_{3}\right) & =\left(a_{1} a_{2} \otimes b_{1} b_{2}\right) \cdot\left(a_{3} \otimes b_{3}\right) \\
& =a_{1} a_{2} a_{3} \otimes b_{1} b_{2} b_{3} \\
& =\left(a_{1} \otimes b_{1}\right) \cdot\left(a_{2} a_{3} \otimes b_{2} b_{3}\right) \\
& =\left(a_{1} \otimes b_{1}\right) \cdot\left(\left(a_{2} \otimes b_{2}\right) \cdot\left(a_{3} \otimes b_{3}\right)\right) .
\end{aligned}
$$

Now suppose $\sum_{i} r_{i}, \sum_{j} s_{j}, \sum_{k} t_{k}$ are tensors in $A \otimes_{R} B$ where each r_{i}, s_{j}, t_{k} are simple tensors. Associativity of simple tensors shows that $\Phi\left(\Phi\left(r_{i}, s_{j}\right), t_{k}\right)=\Phi\left(r_{i}, \Phi\left(s_{j}, t_{k}\right)\right)$. Then

$$
\begin{aligned}
\Phi\left(\Phi\left(\left(\sum_{i} r_{i}\right),\left(\sum_{j} s_{j}\right)\right), \sum_{k} t_{k}\right) & =\Phi\left(\sum_{i, j} \Phi\left(r_{i}, s_{j}\right), \sum_{k} t_{k}\right) \\
& =\sum_{i, j, k} \Phi\left(\Phi\left(r_{i}, s_{j}\right), t_{k}\right) \\
& =\sum_{i, j, k} \Phi\left(r_{i}, \Phi\left(s_{j}, t_{k}\right)\right) \\
& =\Phi\left(\sum_{i} r_{i}, \sum_{j, k} \Phi\left(s_{j}, t_{k}\right)\right) \\
& =\Phi\left(\sum_{i} r_{i}, \Phi\left(\sum_{j} s_{j}, \sum_{k} t_{k}\right)\right)
\end{aligned}
$$

(Distributivity of multiplication over addition) This follows from the bilinearity of the multiplication operator Φ. For any tensors $r, s, t \in A \otimes_{R} B$,

$$
\Phi(r+s, t)=\Phi(r, t)+\Phi(s, t) \quad \text { and } \quad \Phi(r, s+t)=\Phi(r, s)+\Phi(r, t)
$$

(Indentity) We claim that $1 \otimes 1$ is the identity in $A \otimes_{R} B$, where 1 denotes the common identity of R, A, and B. Note that

$$
\begin{aligned}
(1 \otimes 1) \cdot\left(\sum_{i=1}^{n} a_{i} \otimes b_{i}\right) & =\sum_{i=1}^{n}(1 \otimes 1) \cdot\left(a_{i} \otimes b_{i}\right) \\
& =\sum_{i=1}^{n} 1 \cdot a_{i} \otimes 1 \cdot b_{i} \\
& =\sum_{i=1}^{n} a_{i} \otimes b_{i} \\
& =\sum_{i=1}^{n} a_{i} \cdot 1 \otimes b_{i} \cdot 1 \\
& =\sum_{i=1}^{n}\left(a_{i} \otimes b_{i}\right) \cdot(1 \otimes 1) \\
& =\left(\sum_{i=1}^{n} a_{i} \otimes b_{i}\right) \cdot(1 \otimes 1)
\end{aligned}
$$

(R-algebra) Consider the function $f: R \rightarrow A \otimes_{R} B$ given by $f(r)=r \otimes 1$. Note that $f(1)=1 \otimes 1=1_{A \otimes_{R} B}$. Furthermore, we can check that f is a ring homomorphism. For any $r, s \in R$,

$$
f(r+s)=(r \otimes 1)+(s \otimes 1)=(r+s) \otimes 1=f(r)+f(s)
$$

and

$$
f(r \cdot s)=(r \otimes 1) \cdot(s \otimes 1)=(r \cdot s) \otimes 1=f(r) \cdot f(s)
$$

Finally we can check that the image of f belongs to the center of $A \otimes_{R} B$.

$$
\begin{aligned}
f(r) \cdot \sum_{k=1}^{n} a_{k} \otimes b_{k}=(r \otimes 1) \cdot\left(\sum_{k=1}^{n} a_{k} \otimes b_{k}\right) & =\sum_{k=1}^{n}(r \otimes 1)\left(a_{k} \otimes b_{k}\right) \\
& =\sum_{k=1}^{n} r a_{k} \otimes b_{k} \\
& =\sum_{k=1}^{n} a_{k} r \otimes b_{k} \\
& =\sum_{k=1}^{n}\left(a_{k} \otimes b_{k}\right)(r \otimes 1) \\
& =\sum_{k=1}^{n}\left(a_{k} \otimes b_{k}\right)(r \otimes 1) \\
& =\left(\sum_{k=1}^{n} a_{k} \otimes b_{k}\right) \cdot(r \otimes 1)
\end{aligned}
$$

This shows that $A \otimes_{R} B$ is as R-algebra.

Proof of (b). Consider the map $\varphi: \mathbb{Z}[i] \times \mathbb{R} \rightarrow \mathbb{C}$ defined by $\varphi(z, r)=r z$. We claim that φ is \mathbb{Z}-bilinear. To see this, suppose $z, w \in \mathbb{Z}[i]$ and $r, s \in \mathbb{R}$. Then

$$
\varphi(z+w, r)=r(z+w)=r z+r w=\varphi(z, r)+\varphi(w, r)
$$

and

$$
\varphi(z, r+s)=(r+s) z=r z+s z=\varphi(z, r)+\varphi(z, s) .
$$

This extends to a unique \mathbb{Z}-module homomorphism $\Phi: \mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R} \rightarrow \mathbb{C}$ with $\Phi(z \otimes r)=r z$.
Now consider the map $\Psi: \mathbb{C} \rightarrow \mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R}$ given by $\Psi(a+i b)=1 \otimes a+i \otimes b$. We claim that this is also a \mathbb{Z}-module homomorphism (i.e. group homomorphism). To check, note that for $a, b, c, d \in \mathbb{R}$,
$\Psi(a+i b+c+i d)=1 \otimes(a+c)+i \otimes(b+d)=1 \otimes a+1 \otimes c+i \otimes b+i \otimes d=\Psi(a+i b)+\Psi(c+i d)$.
Note that $\Phi \circ \Psi=\mathrm{id}_{\mathbb{C}}$:

$$
\Phi(\Psi(a+i b))=\Phi(1 \otimes a+i \otimes b)=\Phi(1 \otimes a)+\Phi(i \otimes b)=a+i b .
$$

Also $\Psi \circ \Phi=\mathrm{id}_{\mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R}}$. To see this, note that for $a_{j}, b_{j} \in \mathbb{Z}, r_{j} \in \mathbb{R}$,

$$
\begin{aligned}
\Psi\left(\Phi\left(\sum_{j}\left(a_{j}+i b_{j}\right) \otimes r_{j}\right)\right) & =\Psi\left(\sum_{j} \Phi\left(\left(a_{j}+i b_{j}\right) \otimes r_{j}\right)\right) \\
& =\Psi\left(\sum_{j} r_{j}\left(a_{j}+i b_{j}\right)\right) \\
& =\Psi\left(\left(\sum_{j} r_{j} a_{j}\right)+i\left(\sum_{j} r_{j} b_{j}\right)\right) \\
& =1 \otimes\left(\sum_{j} r_{j} a_{j}\right)+i \otimes\left(\sum_{j} r_{j} b_{j}\right) \\
& =\sum_{j}\left(a_{j} \otimes r_{j}\right)+\sum_{j}\left(i b_{j} \otimes r_{j}\right) \\
& =\sum_{j}\left(a_{j}+i b_{j}\right) \otimes r_{j}
\end{aligned}
$$

Therefore Φ gives a \mathbb{Z}-module isomorphism between $\mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R}$ and \mathbb{C} whose inverse is Ψ.

