
Math 721 – Homework 2 Solutions

Problem 1 (DF Exercise 16 +). Suppose that R is a commutative ring with 1 6= 0 and let
I and J be ideals of R, so R/I and R/J are naturally R-modules.

(a) Prove that every element of R/I ⊗R R/J can be written as a simple tensor
(1 mod I)⊗ (r mod J).

(b) Prove that there is an R-module isomorphism R/I ⊗R R/J → R/(I + J) mapping
(r mod I)⊗ (s mod J) to (rs mod I + J).

(c) Give an example of R, I, J and an element in (R/I)2⊗R(R/J)2 that cannot be written
as a simple tensor. Make sure to justify your answer.

Proof of (a). Consider an element
∑n

k=1(ak + I) ⊗ (bk + J) where ak, bk ∈ R. Using the
relations on tensors, we find that

n∑
k=1

(ak + I)⊗ (bk + J) =
n∑

k=1

ak(1 + I)⊗ (bk + J)

=
n∑

k=1

(1 + I)⊗ ak(bk + J)

=
n∑

k=1

(1 + I)⊗ (akbk + J)

= (1 + I)⊗

(
n∑

k=1

akbk + J

)
= (1 + I)⊗ (r + J)

where r =
∑n

k=1 akbk ∈ R. �

Proof of (b). Consider the map ϕ : (R/I)× (R/J)→ R/(I + J) given by

ϕ(a + I, b + J) = ab + I + J.

First let us check that ϕ is well-defined. If a + I = c + I and b + J = d + J , then a− c ∈ I
and b− d ∈ J . Then

ab− cd = (a− c)b + c(b− d) ∈ I + J,

showing that

ϕ(a + I, b + J) = ab + I + J = cd + I + J = ϕ(c + I, d + J).

The map ϕ is bilinear. To see this note, let a, b, c, d, r1, r2 ∈ R. We can check that

ϕ(r1(a + I) + r2(c + I), b + J) = ϕ(r1a + r2c + I, b + J)

= (r1a + r2c)b

= r1ab + r2cb

= r1ϕ(a + I, b + J) + r2ϕ(c + I, b + J)



Therefore there is an R-module homomorphism Φ : R/I ⊗R R/J → R/(I + J) with
Φ(a + I, b + J) = ab + I + J .

Note that Φ is surjective because for any r ∈ R, Φ((1+I)⊗(r+J)) = r+I+J ∈ R/(I+J).
To see that Φ is injective, suppose that some element X ∈ R/I ⊗R R/J belongs to the

kernel of Φ. By part (a), we can write X = (1 + I) ⊗ (r + J) for some r ∈ R. Then
0 = ϕ((1 + I) ⊗ (r + J)) = r + I + J . Therefore r ∈ I + J . In particular, there exist
a ∈ I, b ∈ J with r = a + b. Then

X = (1 + I)⊗ (r + J) = (1 + I)⊗ (a + b + J)

= (1 + I)⊗ (a + J)

= (1 + I)⊗ a(1 + J)

= a(1 + I)⊗ (1 + J)

= (a + I)⊗ (1 + J)

= (0 + I)⊗ (1 + J)

= 0 · (0 + I)⊗ (1 + J)

= 0R/I⊗RR/J

�

Proof of (c). Consider R = Q and I = J = {0}. Then R/I = R/J = Q and Q2 ⊗Q2 is the
four dimensional Q-vectorspace

Q2 ⊗Q2 = {ae1 ⊗ e1 + be1 ⊗ e2 + ce2 ⊗ e1 + de2 ⊗ e2 : a, b, c, d ∈ Q}

Simple tensors have the form

(v1e1 + v2e2)⊗ (w1e1 + w2e2) = v1w1e1 ⊗ e1 + v1w2e1 ⊗ e2 + v2w1e2 ⊗ e1 + v2w2e2 ⊗ e2.

Organizing the coefficients into a 2× 2 matrix, we find that(
a b
c d

)
=

(
v1w1 v1w2

v2w1 v2w2

)
=

(
v1
v2

)(
w1 w2

)
.

In particular, the set of simple tensors in Q2 ⊗Q2 is given by{
ae1 ⊗ e1 + be1 ⊗ e2 + ce2 ⊗ e1 + de2 ⊗ e2 : det

(
a b
c d

)
= 0

}
.

This shows the tensor e1 ⊗ e1 + e2 ⊗ e2 (corresponding to (a, b, c, d) = (1, 0, 0, 1)) cannot be
written as a simple tensor. �



Definition. Let R be a commutative ring with identity 1R 6= 0. An R-algebra is a ring A
with identity 1A 6= 0 and a ring homomorphism f : R→ A with

(1) f(1R) = 1A and
(2) f(r)a = af(r) for all r ∈ R and a ∈ A.

In particular, if R is a subring of A contained in its center with 1R = 1A, then A is an
R-algebra with the map f : R→ A given by f(r) = r.

Problem 2. Let R, A, B be rings with R contained in the center of A and the center of B
and with coinciding (nonzero) multiplicative identities 1R = 1A = 1B 6= 0.

(a) Show that the multiplication (a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′ makes A⊗R B into an
R-algebra. (In the proof of Proposition 10.4.21, it is shown that this multiplication
is well-defined. This completes the proof of the statement of this proposition.)

(b) Show that Z[i]⊗Z R ∼= C as rings.

Proof of (a). Note that we already know that A ⊗R B is group under + and an R-module.
We claim that it is a ring with identity 1⊗1. As noted in the book, the map A×B×A×B →
A⊗R B given by (a, b, a′, b′) 7→ (aa′ ⊗ bb′) is R-bilinear, and so extends R-linearly to a map
Φ : A⊗R B × A⊗R B → A⊗R B with Φ((a⊗ b), (a′ ⊗ b′)) = aa′ ⊗ bb′,

(Associativity of multiplication) First, let us check this on simple tenors: For a1, a2, a3 ∈ A
and b1, b2, b3 ∈ B,(

(a1 ⊗ b1) · (a2 ⊗ b2)
)
·(a3 ⊗ b3) = (a1a2 ⊗ b1b2) · (a3 ⊗ b3)

= a1a2a3 ⊗ b1b2b3

= (a1 ⊗ b1) · (a2a3 ⊗ b2b3)

= (a1 ⊗ b1) ·
(
(a2 ⊗ b2) · (a3 ⊗ b3)

)
.

Now suppose
∑

i ri,
∑

j sj,
∑

k tk are tensors in A ⊗R B where each ri, sj, tk are simple

tensors. Associativity of simple tensors shows that Φ
(
Φ(ri, sj), tk

)
= Φ

(
ri,Φ(sj, tk)

)
. Then

Φ
(
Φ((
∑
i

ri), (
∑
j

sj)),
∑
k

tk
)

= Φ
(∑

i,j

Φ(ri, sj),
∑
k

tk
)

=
∑
i,j,k

Φ
(
Φ(ri, sj), tk

)
=
∑
i,j,k

Φ
(
ri,Φ(sj, tk)

)
= Φ

(∑
i

ri,
∑
j,k

Φ(sj, tk)
)

= Φ
(∑

i

ri,Φ(
∑
j

sj,
∑
k

tk)
)

(Distributivity of multiplication over addition) This follows from the bilinearity of the
multiplication operator Φ. For any tensors r, s, t ∈ A⊗R B,

Φ (r + s, t) = Φ(r, t) + Φ(s, t) and Φ (r, s + t) = Φ(r, s) + Φ(r, t).



(Indentity) We claim that 1 ⊗ 1 is the identity in A ⊗R B, where 1 denotes the common
identity of R, A, and B. Note that

(1⊗ 1) ·

(
n∑

i=1

ai ⊗ bi

)
=

n∑
i=1

(1⊗ 1) · (ai ⊗ bi)

=
n∑

i=1

1 · ai ⊗ 1 · bi

=
n∑

i=1

ai ⊗ bi

=
n∑

i=1

ai · 1⊗ bi · 1

=
n∑

i=1

(ai ⊗ bi) · (1⊗ 1)

=

(
n∑

i=1

ai ⊗ bi

)
· (1⊗ 1)

(R-algebra) Consider the function f : R → A ⊗R B given by f(r) = r ⊗ 1. Note that
f(1) = 1⊗ 1 = 1A⊗RB. Furthermore, we can check that f is a ring homomorphism. For any
r, s ∈ R,

f(r + s) = (r ⊗ 1) + (s⊗ 1) = (r + s)⊗ 1 = f(r) + f(s)

and
f(r · s) = (r ⊗ 1) · (s⊗ 1) = (r · s)⊗ 1 = f(r) · f(s).

Finally we can check that the image of f belongs to the center of A⊗R B.

f(r) ·
n∑

k=1

ak ⊗ bk = (r ⊗ 1) ·

(
n∑

k=1

ak ⊗ bk

)
=

n∑
k=1

(r ⊗ 1)(ak ⊗ bk)

=
n∑

k=1

rak ⊗ bk

=
n∑

k=1

akr ⊗ bk

=
n∑

k=1

(ak ⊗ bk)(r ⊗ 1)

=
n∑

k=1

(ak ⊗ bk)(r ⊗ 1)

=

(
n∑

k=1

ak ⊗ bk

)
· (r ⊗ 1)

This shows that A⊗R B is as R-algebra. �



Proof of (b). Consider the map ϕ : Z[i]× R→ C defined by ϕ(z, r) = rz. We claim that ϕ
is Z-bilinear. To see this, suppose z, w ∈ Z[i] and r, s ∈ R. Then

ϕ(z + w, r) = r(z + w) = rz + rw = ϕ(z, r) + ϕ(w, r)

and
ϕ(z, r + s) = (r + s)z = rz + sz = ϕ(z, r) + ϕ(z, s).

This extends to a unique Z-module homomorphism Φ : Z[i]⊗Z R→ C with Φ(z ⊗ r) = rz.
Now consider the map Ψ : C→ Z[i]⊗ZR given by Ψ(a+ ib) = 1⊗a+ i⊗ b. We claim that

this is also a Z-module homomorphism (i.e. group homomorphism). To check, note that for
a, b, c, d ∈ R,

Ψ(a+ ib+c+ id) = 1⊗(a+c)+ i⊗(b+d) = 1⊗a+1⊗c+ i⊗b+ i⊗d = Ψ(a+ ib)+Ψ(c+ id).

Note that Φ ◦Ψ = idC:

Φ(Ψ(a + ib)) = Φ(1⊗ a + i⊗ b) = Φ(1⊗ a) + Φ(i⊗ b) = a + ib.

Also Ψ ◦ Φ = idZ[i]⊗ZR. To see this, note that for aj, bj ∈ Z, rj ∈ R,

Ψ(Φ(
∑
j

(aj + ibj)⊗ rj)) = Ψ(
∑
j

Φ((aj + ibj)⊗ rj))

= Ψ(
∑
j

rj(aj + ibj))

= Ψ((
∑
j

rjaj) + i(
∑
j

rjbj))

= 1⊗ (
∑
j

rjaj) + i⊗ (
∑
j

rjbj)

=
∑
j

(aj ⊗ rj) +
∑
j

(ibj ⊗ rj)

=
∑
j

(aj + ibj)⊗ rj.

Therefore Φ gives a Z-module isomorphism between Z[i]⊗ZR and C whose inverse is Ψ. �


