Problem 1 (DF Exercise 16 +). Suppose that \(R \) is a commutative ring with \(1 \neq 0 \) and let \(I \) and \(J \) be ideals of \(R \), so \(R/I \) and \(R/J \) are naturally \(R \)-modules.

(a) Prove that every element of \(R/I \otimes_R R/J \) can be written as a simple tensor
\[
(1 \mod I) \otimes (r \mod J).
\]

(b) Prove that there is an \(R \)-module isomorphism \(R/I \otimes_R R/J \to R/(I + J) \) mapping
\[
(r \mod I) \otimes (s \mod J) \to (rs \mod I + J).
\]

(c) Give an example of \(R, I, J \) and an element in \((R/I)^2 \otimes_R (R/J)^2 \) that cannot be written as a simple tensor. Make sure to justify your answer.

Definition. Let \(R \) be a commutative ring with identity \(1_R \neq 0 \). An \(R \)-algebra is a ring \(A \) with identity \(1_A \neq 0 \) and a ring homomorphism \(f: R \to A \) with

1. \(f(1_R) = 1_A \) and
2. \(f(r)a = af(r) \) for all \(r \in R \) and \(a \in A \).

In particular, if \(R \) is a subring of \(A \) contained in its center with \(1_R = 1_A \), then \(A \) is an \(R \)-algebra with the map \(f: R \to A \) given by \(f(r) = r \).

Problem 2. Let \(R, A, B \) be rings with \(R \) contained in the center of \(A \) and the center of \(B \) and with coinciding (nonzero) multiplicative identities \(1_R = 1_A = 1_B \neq 0 \).

(a) Show that the multiplication \((a \otimes b)(a' \otimes b') = aa' \otimes bb' \) makes \(A \otimes_R B \) into an \(R \)-algebra. (In the proof of Proposition 10.4.21, it is shown that this multiplication is well-defined. This completes the proof of the statement of this proposition.)

(b) Show that \(\mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{C} \) as rings.