Math 721 - Homework 1 Solutions

Problem 1 (Kernels and images). Let R be a ring with $1 \neq 0$.
(a) If $\varphi: M \rightarrow N$ is a homomorphism of R-modules, show that the kernel and image of φ are submodules of M and N respectively.
(b) For each of the following R-modules homomorphisms, describe the kernel and image as simply as possible. (You do not need to check that they are homomorphisms.)
(i) $R=\mathbb{Q}[x, y], M=R^{2}, N=R, \varphi(f, g)=x f+y g$
(ii) $R=\mathbb{Z}, M=R^{2}, N=R, \varphi(a, b)=4 a+6 b$
(ii) $R=\operatorname{Mat}_{2 \times 2}(\mathbb{Q}), M=\operatorname{Mat}_{2 \times 3}(\mathbb{Q}), N=\operatorname{Mat}_{2 \times 4}(\mathbb{Q}), \varphi(A)=A U$ where

$$
U=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Proof. (a) Suppose $\varphi: M \rightarrow N$ is a homomorphism of R-modules. Note that $\operatorname{ker}(\varphi)$ is nonempty, since it contains 0 . Moreover, for any $x, y \in \operatorname{ker}(\varphi) \subseteq M$ and $r \in R$,

$$
\varphi(x+r y)=\varphi(x)+r \varphi(y)=0+r 0=0 .
$$

Therefore $x+r y \in \operatorname{ker}(\varphi)$, showing that $\operatorname{ker}(\varphi)$ is a submodule of M.
Similarly, $\varphi(M)$ is nonempty, since it contains $\varphi(0)=0$. For any $x, y \in \varphi(M)$, there exist $a, b \in M$ with $\varphi(a)=x$ and $\varphi(b)=y$. Then for $r \in R$,

$$
\varphi(a+r b)=\varphi(a)+r \varphi(b)=x+r y
$$

showing that $x+r y \in \varphi(M)$ and that $\varphi(M)$ is a submodule of N.
Proof. (b) (i) For $R=\mathbb{Q}[x, y], M=R^{2}, N=R, \varphi(f, g)=x f+y g$, an element $(f, g) \in R^{2}$ belongs to the kernel of φ exactly when $x f+y g=0$. This gives $x f=-y g$, meaning that x divides $y g$ and y divides $x f$. Since neither x nor y divide each other (and R is a unique factorization domain) there must be some $h \in R$ with $f=-y h$ and $g=x h$. Therefore $(f, g)=(-y h, h x)=h(-y, x)$. This shows that

$$
\operatorname{ker}(\varphi)=R(-y, x)
$$

The image of φ is the ideal of R generated by x and y.
(ii) For $R=\mathbb{Z}, M=R^{2}, N=R, \varphi(a, b)=4 a+6 b$, the kernel of φ is $\{(a, b): 4 a+6 b=0\}$. If $4 a+6 b=0$, then $2 a=-3 b$. Since 2 and 3 are relatively prime, there must exist $c \in \mathbb{Z}$ with $a=-3 c$ and $b=2 c$. Then $(a, b)=c(-3,2)$, showing that

$$
\operatorname{ker}(\varphi)=\mathbb{Z}(-3,2)
$$

Then image of φ is the ideal of \mathbb{Z} generated by 4 and 6 . Since \mathbb{Z} is a principal ideal domain, we see that this is generated by $\operatorname{gcd}(4,6)=2$, showings that $\varphi(M)=2 \mathbb{Z}$.
(iii) Let $R=\operatorname{Mat}_{2 \times 2}(\mathbb{Q}), M=\operatorname{Mat}_{2 \times 3}(\mathbb{Q}), N=\operatorname{Mat}_{2 \times 4}(\mathbb{Q}), \varphi(A)=A U$ where

$$
U=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Note that

$$
\varphi\left(\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)\right)=\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & 0 \\
a_{21} & a_{22} & a_{23} & 0
\end{array}\right)
$$

The only way that $\varphi(A)=0_{N}$ is that $A=0_{M}$, so $\operatorname{ker}(\varphi)=\left\{0_{M}\right\}$. The image of φ is the set of 2×4 matrices with last column equal to zero.

Problem $2\left(\operatorname{Hom}_{R}\right)$. Let R be a commutative ring with $1 \neq 0$ and let A, B and M be R-modules. Show the following isomorphisms of R-modules:
(a) $\operatorname{Hom}_{R}(R, M) \cong M$,
(b) $\operatorname{Hom}_{R}(A \times B, M) \cong \operatorname{Hom}_{R}(A, M) \times \operatorname{Hom}_{R}(B, M)$, and
(c) $\operatorname{Hom}_{R}\left(R^{n}, M\right) \cong \underbrace{M \times \cdots \times M}_{n}$.
(d) Give an example to show that it is not always that case that $\operatorname{Hom}_{R}(M, R) \cong M$.

Proof. (a) Consider the map $\Psi: \operatorname{Hom}_{R}(R, M) \rightarrow M$ given by $\Psi(\varphi)=\varphi(1)$ where $\varphi \in$ $\operatorname{Hom}_{R}(R, M)$ and 1 is the unit in R. Note that $\varphi(1) \in M$. We claim that Ψ is an isomorphism.
(Homomorphism) Let $\varphi, \psi \in \operatorname{Hom}_{R}(R, M)$. Then

$$
\Psi(\varphi+\psi)=(\varphi+\psi)(1)=\varphi(1)+\psi(1)=\Psi(\varphi)+\Psi(\psi)
$$

and for any $r \in R$,

$$
\Psi(r \varphi)=(r \varphi)(1)=r \varphi(1)=r \Psi(\varphi)
$$

(Bijection) First, note that Ψ is injective. If $\varphi(1)=\psi(1)$, then since φ and ψ are homomorphisms, for every $r \in R$,

$$
\varphi(r)=r \varphi(1)=r \psi(1)=\psi(r)
$$

meaning that φ and ψ are the same function on R. To see that it is surjective, for $m \in M$, define the map $\varphi_{m}: R \rightarrow M$ by $\varphi_{m}(r)=r m$. We claim that φ_{m} is indeed an R-module homomorphism. To check, we see that it is a function from R to M and satisfies

$$
\varphi_{m}(r x+y)=(r x+y) m=r x m+y m=r \varphi_{m}(x)+\varphi_{m}(y)
$$

for any $x, y, r \in R$. Therefore $\varphi_{m} \in \operatorname{Hom}_{R}(R, M)$. Moreover $\Psi\left(\varphi_{m}\right)=\varphi_{m}(1)=m$.
Proof. (b) Consider the map $\Psi: \operatorname{Hom}_{R}(A, M) \times \operatorname{Hom}_{R}(B, M) \rightarrow \operatorname{Hom}_{R}(A \times B, M)$ given by

$$
\Psi(\alpha, \beta)(a, b)=\alpha(a)+\beta(b) \in M
$$

where $\alpha \in \operatorname{Hom}_{R}(A, M), \beta \in \operatorname{Hom}_{R}(B, M)$, and $(a, b) \in A \times B$. First, note that $\varphi=\Psi(\alpha, \beta)$ is an element of $\operatorname{Hom}_{R}(A \times B, M)$. Given $(a, b),(c, d) \in A \times B$ and $r \in R$,

$$
\begin{aligned}
\varphi((a, b)+r(c, d))=\varphi(a+r c, b+r d) & =\alpha(a+r c)+\beta(b+r d) \\
& =\alpha(a)+r \alpha(c)+\beta(b)+r \beta(d) \\
& =(\alpha(a)+\beta(b))+r(\alpha(c)+\beta(d)) \\
& =\varphi(a, b)+r \varphi(c, d) .
\end{aligned}
$$

Therefore $\Psi(\alpha, \beta)=\varphi \in \operatorname{Hom}_{R}(A \times B, M)$. We claim that Ψ is an isomorphism.
(Homomorphism) Let $(\alpha, \beta),(\gamma, \delta) \in \operatorname{Hom}_{R}(A, M) \times \operatorname{Hom}_{R}(B, M)$ and $r \in R$. For any $a \in A$ and $b \in B$,

$$
\begin{aligned}
\Psi((\alpha, \beta)+r(\gamma, \delta))(a, b)=\Psi(\alpha+r \gamma, \beta+r \delta)(a, b) & =(\alpha+r \gamma)(a)+(\beta+r \delta)(b) \\
& =\alpha(a)+r \gamma(a)+\beta(b)+r \delta(b) \\
& =(\alpha(a)+\beta(b))+r(\gamma(a)+\delta(b)) \\
& =\Psi(\alpha, \beta)(a, b)+r \Psi(\gamma, \delta)(a, b) .
\end{aligned}
$$

So as elements of $\operatorname{Hom}_{R}(A \times B, M), \Psi((\alpha, \beta)+r(\gamma, \delta))=\Psi(\alpha, \beta)+r \Psi(\gamma, \delta)$, giving that Ψ is a homomorphism.
(Bijection) Suppose that $\Psi(\alpha, \beta)(a, b)=\Psi(\gamma, \delta)(a, b)$ for all $(a, b) \in A \times B$. Taking points $\left(a, 0_{B}\right)$ with $a \in A$ shows that

$$
\alpha(a)=\Psi(\alpha, \beta)\left(a, 0_{B}\right)=\Psi(\gamma, \delta)\left(a, 0_{B}\right)=\gamma(a)
$$

for all $a \in A$, giving that $\alpha=\gamma$. Similarly evaluating at points $\left(0_{A}, b\right)$ shows that $\beta=\delta$. Therefore Ψ is injective.

For surjectivity, suppose that $\varphi \in \operatorname{Hom}_{R}(A \times B, M)$. Let $\alpha: A \rightarrow M$ and $\beta: B \rightarrow M$ be defined by $\alpha(a)=\varphi\left(a, 0_{B}\right)$ and $\beta(b)=\varphi\left(0_{A}, b\right)$, respectively, where 0_{A} and 0_{B} are the additive identities of A and B. We claim that $\alpha \in \operatorname{Hom}_{R}(A, M), \beta \in \operatorname{Hom}_{R}(B, M)$ and $\Psi(\alpha, \beta)=\varphi$.

First note that for $a, c \in A$ and $r \in R$,

$$
\alpha(a+r c)=\varphi\left(a+r c, 0_{B}\right)=\varphi\left(\left(a, 0_{B}\right)+r\left(c, 0_{B}\right)\right)=\varphi\left(a, 0_{B}\right)+r \varphi\left(c, 0_{B}\right)=\alpha(a)+r \alpha(c) .
$$

Similarly, for $b, d \in B$ and $r \in R$,

$$
\beta(b+r d)=\varphi\left(0_{A}, b+r d\right)=\varphi\left(\left(0_{A}, b\right)+r\left(0_{A}, d\right)\right)=\varphi\left(0_{A}, b\right)+r \varphi\left(0_{A}, d\right)=\beta(b)+r \beta(d) .
$$

Finally, note that for any $(a, b) \in A \times B,(a, b)=\left(a, 0_{B}\right)+\left(0_{A}, b\right)$. Then

$$
\Psi(\alpha, \beta)(a, b)=\alpha(a)+\beta(b)=\varphi\left(a, 0_{B}\right)+\varphi\left(0_{A}, b\right)=\varphi(a, b)
$$

Proof. (c) We proceed by induction on n. By part (a), this holds with $n=1$. Suppose that it holds for some $n \in \mathbb{Z}_{+}$. Note that $R^{n+1} \cong R \times R^{n}$. Then by part (b),

$$
\operatorname{Hom}_{R}\left(R^{n+1}, M\right) \cong \operatorname{Hom}_{R}(R, M) \times \operatorname{Hom}_{R}\left(R^{n}, M\right) \cong M \times(\underbrace{M \times \cdots \times M}_{n}) \cong \underbrace{M \times \cdots \times M}_{n+1}
$$

This shows the claim for all $n \in \mathbb{Z}_{+}$.
Proof. (d) Let $R=\mathbb{Z}$ and $M=\mathbb{Z} / 2 \mathbb{Z}$ and consider $\varphi \in \operatorname{Hom}_{R}(M, R)$. Note that $\varphi(0)=$ $0 \varphi(1)=0$. If $\varphi(1)=n \in \mathbb{Z}$, then

$$
0=\varphi(0)=\varphi(1+1)=\varphi(1)+\varphi(1)=2 \varphi(1)
$$

Since \mathbb{Z} has no zero-divisors, $2 \varphi(1)=0$ implies $\varphi(1)=0$. Therefore the only \mathbb{Z}-module homomorphism from $\mathbb{Z} / 2 \mathbb{Z}$ to \mathbb{Z} is the map φ given by $\varphi(a)=0$ for all $a \in \mathbb{Z} / 2 \mathbb{Z}$. Then there is only one element in $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z})$, whereas $M=\mathbb{Z} / 2 \mathbb{Z}$ has two.

