Math 721 – Homework 1 Solutions

Problem 1 (Kernels and images). Let R be a ring with $1 \neq 0$.

- (a) If $\varphi : M \to N$ is a homomorphism of *R*-modules, show that the kernel and image of φ are submodules of *M* and *N* respectively.
- (b) For each of the following *R*-modules homomorphisms, describe the kernel and image as simply as possible. (You do not need to check that they are homomorphisms.)

(i)
$$R = \mathbb{Q}[x, y], M = R^2, N = R, \varphi(f, g) = xf + yg$$

(ii)
$$R = \mathbb{Z}, M = R^2, N = R, \varphi(a, b) = 4a + 6b$$

(ii)
$$R = \operatorname{Mat}_{2 \times 2}(\mathbb{Q}), M = \operatorname{Mat}_{2 \times 3}(\mathbb{Q}), N = \operatorname{Mat}_{2 \times 4}(\mathbb{Q}), \varphi(A) = AU$$
 where

$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Proof. (a) Suppose $\varphi : M \to N$ is a homomorphism of *R*-modules. Note that $\ker(\varphi)$ is nonempty, since it contains 0. Moreover, for any $x, y \in \ker(\varphi) \subseteq M$ and $r \in R$,

$$\varphi(x+ry) = \varphi(x) + r\varphi(y) = 0 + r0 = 0.$$

Therefore $x + ry \in \ker(\varphi)$, showing that $\ker(\varphi)$ is a submodule of M.

Similarly, $\varphi(M)$ is nonempty, since it contains $\varphi(0) = 0$. For any $x, y \in \varphi(M)$, there exist $a, b \in M$ with $\varphi(a) = x$ and $\varphi(b) = y$. Then for $r \in R$,

$$\varphi(a+rb) = \varphi(a) + r\varphi(b) = x + ry,$$

showing that $x + ry \in \varphi(M)$ and that $\varphi(M)$ is a submodule of N.

Proof. (b) (i) For $R = \mathbb{Q}[x, y]$, $M = R^2$, N = R, $\varphi(f, g) = xf + yg$, an element $(f, g) \in R^2$ belongs to the kernel of φ exactly when xf + yg = 0. This gives xf = -yg, meaning that x divides yg and y divides xf. Since neither x nor y divide each other (and R is a unique factorization domain) there must be some $h \in R$ with f = -yh and g = xh. Therefore (f,g) = (-yh, hx) = h(-y, x). This shows that

$$\ker(\varphi) = R(-y, x).$$

The image of φ is the ideal of R generated by x and y.

(ii) For $R = \mathbb{Z}$, $M = R^2$, N = R, $\varphi(a, b) = 4a + 6b$, the kernel of φ is $\{(a, b) : 4a + 6b = 0\}$. If 4a + 6b = 0, then 2a = -3b. Since 2 and 3 are relatively prime, there must exist $c \in \mathbb{Z}$ with a = -3c and b = 2c. Then (a, b) = c(-3, 2), showing that

$$\ker(\varphi) = \mathbb{Z}(-3,2).$$

Then image of φ is the ideal of \mathbb{Z} generated by 4 and 6. Since \mathbb{Z} is a principal ideal domain, we see that this is generated by gcd(4, 6) = 2, showings that $\varphi(M) = 2\mathbb{Z}$.

(iii) Let
$$R = \operatorname{Mat}_{2 \times 2}(\mathbb{Q}), M = \operatorname{Mat}_{2 \times 3}(\mathbb{Q}), N = \operatorname{Mat}_{2 \times 4}(\mathbb{Q}), \varphi(A) = AU$$
 where

$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Note that

$$\varphi\left(\begin{pmatrix}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\end{pmatrix}\right) = \begin{pmatrix}a_{11} & a_{12} & a_{13} & 0\\a_{21} & a_{22} & a_{23} & 0\end{pmatrix}$$

The only way that $\varphi(A) = 0_N$ is that $A = 0_M$, so ker $(\varphi) = \{0_M\}$. The image of φ is the set of 2×4 matrices with last column equal to zero.

Problem 2 (Hom_R). Let R be a commutative ring with $1 \neq 0$ and let A, B and M be R-modules. Show the following isomorphisms of R-modules:

- (a) $\operatorname{Hom}_R(R, M) \cong M$,
- (b) $\operatorname{Hom}_R(A \times B, M) \cong \operatorname{Hom}_R(A, M) \times \operatorname{Hom}_R(B, M)$, and
- (c) $\operatorname{Hom}_R(\mathbb{R}^n, M) \cong \underbrace{M \times \cdots \times M}_n$.

(d) Give an example to show that it is not always that case that $\operatorname{Hom}_R(M, R) \cong M$.

Proof. (a) Consider the map Ψ : Hom_R(R, M) $\to M$ given by $\Psi(\varphi) = \varphi(1)$ where $\varphi \in \text{Hom}_R(R, M)$ and 1 is the unit in R. Note that $\varphi(1) \in M$. We claim that Ψ is an isomorphism.

(Homomorphism) Let $\varphi, \psi \in \operatorname{Hom}_R(R, M)$. Then

$$\Psi(\varphi + \psi) = (\varphi + \psi)(1) = \varphi(1) + \psi(1) = \Psi(\varphi) + \Psi(\psi).$$

and for any $r \in R$,

$$\Psi(r\varphi) = (r\varphi)(1) = r\varphi(1) = r\Psi(\varphi).$$

(Bijection) First, note that Ψ is injective. If $\varphi(1) = \psi(1)$, then since φ and ψ are homomorphisms, for every $r \in R$,

$$\varphi(r) = r\varphi(1) = r\psi(1) = \psi(r),$$

meaning that φ and ψ are the same function on R. To see that it is surjective, for $m \in M$, define the map $\varphi_m : R \to M$ by $\varphi_m(r) = rm$. We claim that φ_m is indeed an R-module homomorphism. To check, we see that it is a function from R to M and satisfies

$$\varphi_m(rx+y) = (rx+y)m = rxm + ym = r\varphi_m(x) + \varphi_m(y)$$

for any $x, y, r \in \mathbb{R}$. Therefore $\varphi_m \in \operatorname{Hom}_{\mathbb{R}}(\mathbb{R}, M)$. Moreover $\Psi(\varphi_m) = \varphi_m(1) = m$.

Proof. (b) Consider the map Ψ : Hom_R(A, M) × Hom_R(B, M) \rightarrow Hom_R(A × B, M) given by

$$\Psi(\alpha,\beta)(a,b) = \alpha(a) + \beta(b) \in M$$

where $\alpha \in \operatorname{Hom}_R(A, M)$, $\beta \in \operatorname{Hom}_R(B, M)$, and $(a, b) \in A \times B$. First, note that $\varphi = \Psi(\alpha, \beta)$ is an element of $\operatorname{Hom}_R(A \times B, M)$. Given $(a, b), (c, d) \in A \times B$ and $r \in R$,

$$\varphi((a,b) + r(c,d)) = \varphi(a + rc, b + rd) = \alpha(a + rc) + \beta(b + rd)$$
$$= \alpha(a) + r\alpha(c) + \beta(b) + r\beta(d)$$
$$= (\alpha(a) + \beta(b)) + r(\alpha(c) + \beta(d))$$
$$= \varphi(a,b) + r\varphi(c,d).$$

Therefore $\Psi(\alpha, \beta) = \varphi \in \operatorname{Hom}_R(A \times B, M)$. We claim that Ψ is an isomorphism.

(Homomorphism) Let $(\alpha, \beta), (\gamma, \delta) \in \operatorname{Hom}_R(A, M) \times \operatorname{Hom}_R(B, M)$ and $r \in R$. For any $a \in A$ and $b \in B$,

$$\Psi((\alpha,\beta) + r(\gamma,\delta))(a,b) = \Psi(\alpha + r\gamma,\beta + r\delta)(a,b) = (\alpha + r\gamma)(a) + (\beta + r\delta)(b)$$

= $\alpha(a) + r\gamma(a) + \beta(b) + r\delta(b)$
= $(\alpha(a) + \beta(b)) + r(\gamma(a) + \delta(b))$
= $\Psi(\alpha,\beta)(a,b) + r\Psi(\gamma,\delta)(a,b).$

So as elements of $\operatorname{Hom}_R(A \times B, M), \Psi((\alpha, \beta) + r(\gamma, \delta)) = \Psi(\alpha, \beta) + r\Psi(\gamma, \delta)$, giving that Ψ is a homomorphism.

(Bijection) Suppose that $\Psi(\alpha,\beta)(a,b) = \Psi(\gamma,\delta)(a,b)$ for all $(a,b) \in A \times B$. Taking points $(a, 0_B)$ with $a \in A$ shows that

$$\alpha(a) = \Psi(\alpha, \beta)(a, 0_B) = \Psi(\gamma, \delta)(a, 0_B) = \gamma(a)$$

for all $a \in A$, giving that $\alpha = \gamma$. Similarly evaluating at points $(0_A, b)$ shows that $\beta = \delta$. Therefore Ψ is injective.

For surjectivity, suppose that $\varphi \in \operatorname{Hom}_{R}(A \times B, M)$. Let $\alpha : A \to M$ and $\beta : B \to M$ be defined by $\alpha(a) = \varphi(a, 0_B)$ and $\beta(b) = \varphi(0_A, b)$, respectively, where 0_A and 0_B are the additive identities of A and B. We claim that $\alpha \in \operatorname{Hom}_R(A, M), \beta \in \operatorname{Hom}_R(B, M)$ and $\Psi(\alpha,\beta) = \varphi.$

First note that for $a, c \in A$ and $r \in R$,

$$\alpha(a+rc) = \varphi(a+rc, 0_B) = \varphi((a, 0_B) + r(c, 0_B)) = \varphi(a, 0_B) + r\varphi(c, 0_B) = \alpha(a) + r\alpha(c).$$

Similarly, for $b, d \in B$ and $r \in R$,

$$\beta(b+rd) = \varphi(0_A, b+rd) = \varphi((0_A, b) + r(0_A, d)) = \varphi(0_A, b) + r\varphi(0_A, d) = \beta(b) + r\beta(d).$$

Finally, note that for any $(a, b) \in A \times B$, $(a, b) = (a, 0_B) + (0_A, b)$. Then

$$\Psi(\alpha,\beta)(a,b) = \alpha(a) + \beta(b) = \varphi(a,0_B) + \varphi(0_A,b) = \varphi(a,b).$$

Proof. (c) We proceed by induction on n. By part (a), this holds with n = 1. Suppose that it holds for some $n \in \mathbb{Z}_+$. Note that $R^{n+1} \cong R \times R^n$. Then by part (b), 1.1

$$\operatorname{Hom}_{R}(R^{n+1}, M) \cong \operatorname{Hom}_{R}(R, M) \times \operatorname{Hom}_{R}(R^{n}, M) \cong M \times (\underbrace{M \times \cdots \times M}_{n}) \cong \underbrace{M \times \cdots \times M}_{n+1}.$$

This shows the claim for all $n \in \mathbb{Z}_{+}$.

This shows the claim for all $n \in \mathbb{Z}_+$.

Proof. (d) Let $R = \mathbb{Z}$ and $M = \mathbb{Z}/2\mathbb{Z}$ and consider $\varphi \in \operatorname{Hom}_R(M, R)$. Note that $\varphi(0) = \mathbb{Z}/2\mathbb{Z}$ $0\varphi(1) = 0$. If $\varphi(1) = n \in \mathbb{Z}$, then

$$0 = \varphi(0) = \varphi(1+1) = \varphi(1) + \varphi(1) = 2\varphi(1).$$

Since \mathbb{Z} has no zero-divisors, $2\varphi(1) = 0$ implies $\varphi(1) = 0$. Therefore the only \mathbb{Z} -module homomorphism from $\mathbb{Z}/2\mathbb{Z}$ to \mathbb{Z} is the map φ given by $\varphi(a) = 0$ for all $a \in \mathbb{Z}/2\mathbb{Z}$. Then there is only one element in $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z})$, whereas $M = \mathbb{Z}/2\mathbb{Z}$ has two.