
Math 721 – Homework 1 Solutions

Problem 1 (Kernels and images). Let R be a ring with 1 6= 0.

(a) If ϕ : M → N is a homomorphism of R-modules, show that the kernel and image of
ϕ are submodules of M and N respectively.

(b) For each of the following R-modules homomorphisms, describe the kernel and image
as simply as possible. (You do not need to check that they are homomorphisms.)

(i) R = Q[x, y], M = R2, N = R, ϕ(f, g) = xf + yg

(ii) R = Z, M = R2, N = R, ϕ(a, b) = 4a+ 6b

(ii) R = Mat2×2(Q), M = Mat2×3(Q), N = Mat2×4(Q), ϕ(A) = AU where

U =

1 0 0 0
0 1 0 0
0 0 1 0

 .

Proof. (a) Suppose ϕ : M → N is a homomorphism of R-modules. Note that ker(ϕ) is
nonempty, since it contains 0. Moreover, for any x, y ∈ ker(ϕ) ⊆M and r ∈ R,

ϕ(x+ ry) = ϕ(x) + rϕ(y) = 0 + r0 = 0.

Therefore x+ ry ∈ ker(ϕ), showing that ker(ϕ) is a submodule of M .
Similarly, ϕ(M) is nonempty, since it contains ϕ(0) = 0. For any x, y ∈ ϕ(M), there exist

a, b ∈M with ϕ(a) = x and ϕ(b) = y. Then for r ∈ R,

ϕ(a+ rb) = ϕ(a) + rϕ(b) = x+ ry,

showing that x+ ry ∈ ϕ(M) and that ϕ(M) is a submodule of N . �

Proof. (b) (i) For R = Q[x, y], M = R2, N = R, ϕ(f, g) = xf + yg, an element (f, g) ∈ R2

belongs to the kernel of ϕ exactly when xf + yg = 0. This gives xf = −yg, meaning that
x divides yg and y divides xf . Since neither x nor y divide each other (and R is a unique
factorization domain) there must be some h ∈ R with f = −yh and g = xh. Therefore
(f, g) = (−yh, hx) = h(−y, x). This shows that

ker(ϕ) = R(−y, x).

The image of ϕ is the ideal of R generated by x and y.

(ii) For R = Z, M = R2, N = R, ϕ(a, b) = 4a+6b, the kernel of ϕ is {(a, b) : 4a+6b = 0}.
If 4a + 6b = 0, then 2a = −3b. Since 2 and 3 are relatively prime, there must exist c ∈ Z
with a = −3c and b = 2c. Then (a, b) = c(−3, 2), showing that

ker(ϕ) = Z(−3, 2).

Then image of ϕ is the ideal of Z generated by 4 and 6. Since Z is a principal ideal domain,
we see that this is generated by gcd(4, 6) = 2, showings that ϕ(M) = 2Z.

(iii) Let R = Mat2×2(Q), M = Mat2×3(Q), N = Mat2×4(Q), ϕ(A) = AU where

U =

1 0 0 0
0 1 0 0
0 0 1 0

 .



Note that

ϕ

((
a11 a12 a13
a21 a22 a23

))
=

(
a11 a12 a13 0
a21 a22 a23 0

)
The only way that ϕ(A) = 0N is that A = 0M , so ker(ϕ) = {0M}. The image of ϕ is the set
of 2× 4 matrices with last column equal to zero. �

Problem 2 (HomR). Let R be a commutative ring with 1 6= 0 and let A, B and M be
R-modules. Show the following isomorphisms of R-modules:

(a) HomR(R,M) ∼= M ,

(b) HomR(A×B,M) ∼= HomR(A,M)× HomR(B,M), and

(c) HomR(Rn,M) ∼= M × · · · ×M︸ ︷︷ ︸
n

.

(d) Give an example to show that it is not always that case that HomR(M,R) ∼= M .

Proof. (a) Consider the map Ψ : HomR(R,M) → M given by Ψ(ϕ) = ϕ(1) where ϕ ∈
HomR(R,M) and 1 is the unit in R. Note that ϕ(1) ∈ M . We claim that Ψ is an isomor-
phism.

(Homomorphism) Let ϕ, ψ ∈ HomR(R,M). Then

Ψ(ϕ+ ψ) = (ϕ+ ψ)(1) = ϕ(1) + ψ(1) = Ψ(ϕ) + Ψ(ψ).

and for any r ∈ R,

Ψ(rϕ) = (rϕ)(1) = rϕ(1) = rΨ(ϕ).

(Bijection) First, note that Ψ is injective. If ϕ(1) = ψ(1), then since ϕ and ψ are homomor-
phisms, for every r ∈ R,

ϕ(r) = rϕ(1) = rψ(1) = ψ(r),

meaning that ϕ and ψ are the same function on R. To see that it is surjective, for m ∈ M ,
define the map ϕm : R → M by ϕm(r) = rm. We claim that ϕm is indeed an R-module
homomorphism. To check, we see that it is a function from R to M and satisfies

ϕm(rx+ y) = (rx+ y)m = rxm+ ym = rϕm(x) + ϕm(y)

for any x, y, r ∈ R. Therefore ϕm ∈ HomR(R,M). Moreover Ψ(ϕm) = ϕm(1) = m. �

Proof. (b) Consider the map Ψ : HomR(A,M)×HomR(B,M)→ HomR(A×B,M) given by

Ψ(α, β)(a, b) = α(a) + β(b) ∈M

where α ∈ HomR(A,M), β ∈ HomR(B,M), and (a, b) ∈ A×B. First, note that ϕ = Ψ(α, β)
is an element of HomR(A×B,M). Given (a, b), (c, d) ∈ A×B and r ∈ R,

ϕ((a, b) + r(c, d)) = ϕ(a+ rc, b+ rd) = α(a+ rc) + β(b+ rd)

= α(a) + rα(c) + β(b) + rβ(d)

= (α(a) + β(b)) + r(α(c) + β(d))

= ϕ(a, b) + rϕ(c, d).

Therefore Ψ(α, β) = ϕ ∈ HomR(A×B,M). We claim that Ψ is an isomorphism.



(Homomorphism) Let (α, β), (γ, δ) ∈ HomR(A,M) × HomR(B,M) and r ∈ R. For any
a ∈ A and b ∈ B,

Ψ((α, β) + r(γ, δ))(a, b) = Ψ(α + rγ, β + rδ)(a, b) = (α + rγ)(a) + (β + rδ)(b)

= α(a) + rγ(a) + β(b) + rδ(b)

= (α(a) + β(b)) + r(γ(a) + δ(b))

= Ψ(α, β)(a, b) + rΨ(γ, δ)(a, b).

So as elements of HomR(A×B,M), Ψ((α, β) + r(γ, δ)) = Ψ(α, β) + rΨ(γ, δ), giving that Ψ
is a homomorphism.

(Bijection) Suppose that Ψ(α, β)(a, b) = Ψ(γ, δ)(a, b) for all (a, b) ∈ A×B. Taking points
(a, 0B) with a ∈ A shows that

α(a) = Ψ(α, β)(a, 0B) = Ψ(γ, δ)(a, 0B) = γ(a)

for all a ∈ A, giving that α = γ. Similarly evaluating at points (0A, b) shows that β = δ.
Therefore Ψ is injective.

For surjectivity, suppose that ϕ ∈ HomR(A × B,M). Let α : A → M and β : B → M
be defined by α(a) = ϕ(a, 0B) and β(b) = ϕ(0A, b), respectively, where 0A and 0B are the
additive identities of A and B. We claim that α ∈ HomR(A,M), β ∈ HomR(B,M) and
Ψ(α, β) = ϕ.

First note that for a, c ∈ A and r ∈ R,

α(a+ rc) = ϕ(a+ rc, 0B) = ϕ((a, 0B) + r(c, 0B)) = ϕ(a, 0B) + rϕ(c, 0B) = α(a) + rα(c).

Similarly, for b, d ∈ B and r ∈ R,

β(b+ rd) = ϕ(0A, b+ rd) = ϕ((0A, b) + r(0A, d)) = ϕ(0A, b) + rϕ(0A, d) = β(b) + rβ(d).

Finally, note that for any (a, b) ∈ A×B, (a, b) = (a, 0B) + (0A, b). Then

Ψ(α, β)(a, b) = α(a) + β(b) = ϕ(a, 0B) + ϕ(0A, b) = ϕ(a, b).

�

Proof. (c) We proceed by induction on n. By part (a), this holds with n = 1. Suppose that
it holds for some n ∈ Z+. Note that Rn+1 ∼= R×Rn. Then by part (b),

HomR(Rn+1,M) ∼= HomR(R,M)× HomR(Rn,M) ∼= M × (M × · · · ×M︸ ︷︷ ︸
n

) ∼= M × · · · ×M︸ ︷︷ ︸
n+1

.

This shows the claim for all n ∈ Z+. �

Proof. (d) Let R = Z and M = Z/2Z and consider ϕ ∈ HomR(M,R). Note that ϕ(0) =
0ϕ(1) = 0. If ϕ(1) = n ∈ Z, then

0 = ϕ(0) = ϕ(1 + 1) = ϕ(1) + ϕ(1) = 2ϕ(1).

Since Z has no zero-divisors, 2ϕ(1) = 0 implies ϕ(1) = 0. Therefore the only Z-module
homomorphism from Z/2Z to Z is the map ϕ given by ϕ(a) = 0 for all a ∈ Z/2Z. Then
there is only one element in HomZ(Z/2Z,Z), whereas M = Z/2Z has two. �


