Math 721 - Homework 10 - Solutions

Problem 1 (DF 18.1.15 \& 16). Let G be a finite abelian group. This exercise concerns 1-dimensional complex representations of G. (Here "complex" means "over \mathbb{C} ".)
(a) If G is cyclic, exhibit all 1-dimensional complex representations of G. Make sure to decide which are inequivalent.
(b) For arbitrary finite abelian group G, exhibit all 1-dimensional complex representations of G and decide which are inequivalent.
(c) Conclude that the number of inequivalent 1-dimensional complex representations of G equals $|G|$.

Proof of (a). Let $G=\left\langle\sigma: \sigma^{n}=1\right\rangle$ be the cyclic group of order n. Note that a group homomorphism $\varphi: G \rightarrow \mathrm{GL}_{1}(\mathbb{C})=\mathbb{C}^{*}$ is determined by $\varphi(\sigma)$, since $\varphi\left(\sigma^{k}\right)=\varphi(\sigma)^{k}$ for all $k \in \mathbb{Z}$. Note that

$$
\varphi(\sigma)^{n}=\varphi\left(\sigma^{n}\right)=\varphi(1)=1
$$

so $\varphi(\sigma)$ must be an nth root of unity. Let ω be a primitive nth roots of unity (e.g $\omega=e^{2 \pi i / n}$). Then $\varphi(\sigma)=\omega^{\ell}$ for some $\ell \in\{0,1, \ldots n-1\}$. Moreover, for any $\ell \in\{0,1, \ldots n-1\}$, $\varphi\left(\sigma^{k}\right)=\omega^{k} \ell$ defines a group homomorphism $\varphi: G \rightarrow \mathbb{C}^{*}$.

Now consider a representation $\varphi: G \rightarrow \mathrm{GL}_{1}(\mathbb{C})=\mathbb{C}^{*}$. All equivalent representations ψ have the form

$$
\psi(g)=u^{-1} \varphi(g) u \quad \text { for some } u \in \mathrm{GL}_{1}(\mathbb{C})=\mathbb{C}^{*}
$$

Since the multiplicative group of \mathbb{C}^{*} is abelian, we see that

$$
\psi(g)=u^{-1} \varphi(g) u=\varphi(g) u^{-1} u=\varphi(g) .
$$

Therefore the only way for two 1-dimensional representations to be equivalent is if they are the same.

Proof of (b). Let G be a finite abelian group. By the classification of finite abelian groups (i.e. torsion \mathbb{Z}-modules), we can write $G=G_{1} \oplus \ldots \oplus G_{r}$ where each component $G_{j} \cong \mathbb{Z} / n_{j} \mathbb{Z}$ is cyclic of size $n_{j} \in \mathbb{Z}_{+}$. Then the set of group homomorphisms from G to \mathbb{C}^{*} satisfies

$$
\operatorname{Hom}_{\mathbb{Z}}\left(G, \mathbb{C}^{*}\right)=\operatorname{Hom}_{\mathbb{Z}}\left(G_{1} \oplus \ldots \oplus G_{r}, \mathbb{C}^{*}\right) \cong \operatorname{Hom}_{\mathbb{Z}}\left(G_{1}, \mathbb{C}^{*}\right) \oplus \ldots \oplus \operatorname{Hom}_{\mathbb{Z}}\left(G_{r}, \mathbb{C}^{*}\right)
$$

Explicitly, for each $j=1, \ldots, r$, let σ_{j} denote the element of G corresponding given the identity in the G_{j} th factor and zero in the rest, so that $G_{j}=\left\langle\sigma_{j}\right\rangle$ is a cyclic group of order n_{j}. Any group homomorphism $\varphi: G \rightarrow \mathbb{C}^{*}$ is uniquely determined by its values $\sigma_{1}, \ldots, \sigma_{r}$. Since φ restricts to a homomorphism $\left.\varphi\right|_{G_{j}}: G_{j} \rightarrow \mathbb{C}^{*}$, the options for $\varphi\left(\sigma_{j}\right)$ are exactly the n_{j} th roots of unity. If $\omega_{j}=e^{2 \pi i / n_{j}}$ is a primitive n_{j} th root of unity in \mathbb{C}, then for every choice of $\left(\ell_{1}, \ldots, \ell_{r}\right) \in \mathbb{Z}_{\geq 0}^{r}$ with $0 \leq \ell_{j} \leq n_{j}-1$, there is a unique 1-dimensional complex representation $\varphi\left(\sigma_{j}\right)=\left(\omega_{j}\right)^{\ell_{j}}$.

As argued in part (a), the only way for two 1-dimensional representations to be equivalent is if they are the same.

Proof of (c). In part (b), we saw that if G is a finite abelian group then it is isomorphism to $\mathbb{Z} / n_{1} \mathbb{Z} \oplus \ldots \mathbb{Z} / n_{r} \mathbb{Z}$ for some $n_{1}, \ldots, n_{r} \in \mathbb{Z}_{+}$, giving $|G|=\prod_{j=1}^{r} n_{j}$ and the number of inequivalent 1-dimensional complex representations of G is $\left|\operatorname{Hom}_{\mathbb{Z}}\left(G, \mathbb{C}^{*}\right)\right|=\prod_{j=1}^{r} n_{j}$.

Problem 2 (DF 18.2.12). Let F be a field, $f(x) \in F[x]$, and $R=F[x] / f(x)$.
(a) Find necessary and sufficient conditions on the factorization of $f(x)$ in $F[x]$ so that R is a semisimple ring.
(b) When R is semisimple, describe its Wedderburn decomposition.

Proof of (a). Let $f=f_{1}^{\alpha_{1}} \cdots f_{r}^{\alpha_{r}}$ be a factorization of f in $F[x]$, where f_{1}, \ldots, f_{r} are irreducible and distinct and $\alpha_{1}, \ldots, a_{r} \in \mathbb{Z}_{+}$. Let $R=F[x] /\langle f(x)\rangle$. By the Chinese remainder theorem,

$$
R \cong F[x] /\left\langle f_{1}^{\alpha_{1}}\right\rangle \times \ldots \times F[x] /\left\langle f_{r}^{\alpha_{r}}\right\rangle .
$$

Claim 1. The ring $R=F[x] / f(x)$ is semisimple if and only if $\alpha_{j}=1$ for all $j=1, \ldots, r$.
(\Leftarrow) If $\alpha_{j}=1$ for all $j=1, \ldots, r$, then

$$
R \cong F[x] /\left\langle f_{1}\right\rangle \times \ldots \times F[x] /\left\langle f_{r}\right\rangle
$$

For every j, f_{j} is irreducible, meaning that $F_{j}=F[x] /\left\langle f_{j}\right\rangle$ is a field. Any field is isomorphic to the ring of 1×1 matrices over that field, so we find that

$$
\begin{equation*}
R \cong M_{1}\left(F_{1}\right) \times \ldots \times M_{1}\left(F_{r}\right) . \tag{1}
\end{equation*}
$$

By criterion \# 5 in Wedderburn's theorem, R is semisimple.
(\Rightarrow) Suppose that R is semisimple. Its Wedderburn decomposition is its Wedderburn decomposition has the form

$$
R \cong M_{n_{1}}\left(\Delta_{1}\right) \times \ldots \times M_{n_{r}}\left(\Delta_{r}\right) .
$$

for some $n_{1}, \ldots, n_{r} \in \mathbb{Z}_{+}$and division rings $\Delta_{1}, \ldots, \Delta_{r}$. Since R is commutative, we see that $n_{j}=1$ for all j and Δ_{j} must be commutative and hence a field F_{j}. This gives the ring isomorphisms

$$
R \cong M_{1}\left(F_{1}\right) \times \ldots \times M_{1}\left(F_{r}\right) \cong F_{1} \times \ldots \times F_{r} .
$$

It follows that R has no nonzero nilpotent elements. To see this, suppose that $a=\left(a_{1}, \ldots, a_{r}\right)$ is al element of $F_{1} \times \ldots \times F_{r}$ with $0=a^{n}=\left(a_{1}^{n}, \ldots, a_{r}^{n}\right)$ for some $n \in \mathbb{Z}_{+}$. Then $a_{j}^{n}=0$ for all n. Since each F_{j} is a field, $a_{j}^{n}=0$ implies that $a_{j}=0$. It follows that $a=(0, \ldots, 0)=0$.

Suppose, for the sake of contradiction, that in the irreducible factorization of $f, \alpha_{j}>1$ for some j. Let e_{j} denote the element of R that equals 1 modulo $\left\langle f_{j}^{\alpha_{j}}\right\rangle$ and 0 modulo $\left\langle f_{i}^{\alpha_{i}}\right\rangle$ for all $i \neq j$. Since $\alpha_{j}>1, f_{j} e_{j}$ is nonzero in R, but we see that $\left(f_{j} e_{j}\right)^{\alpha_{j}}=f_{j}^{\alpha_{j}} e_{j}=0$. Therefore $f_{j} e_{j}$ is a nonzero nilpotent element in R and giving a contradiction.

This shows that if R is semisimple, then $\alpha_{j}=1$ for all $j=1, \ldots, r$ in the irreducible decomposition of f.
Solution to (b). If R is semisimple, then the Wedderburn decomposition of R is given in Equation (1) in part (a) above.

