Math 721 - Homework 1

Due Thursday, January 16, 2019 at 10:15am

Good practice problems (do not turn in solutions):
DF 10.1 Exercises 2, 4, 7, 9, 10, 11
DF 10.2 Exercises 3, 5, 6, 12
DF 10.3 Exercises 2, 7, 9, 16, 17

Problem 1 (Kernels and images). Let R be a ring with $1 \neq 0$.
(a) If $\varphi: M \rightarrow N$ is a homomorphism of R-modules, show that the kernel and image of φ are submodules of M and N, respectively.
(b) For each of the following R-module homomorphisms, describe the kernel and image as simply as possible. (You do not need to check that they are homomorphisms.)
(i) $R=\mathbb{Q}[x, y], M=R^{2}, N=R, \varphi(f, g)=x f+y g$,
(ii) $R=\mathbb{Z}, M=R^{2}, N=R, \varphi(a, b)=4 a+6 b$, and
(ii) $R=\operatorname{Mat}_{2 \times 2}(\mathbb{Q}), M=\operatorname{Mat}_{2 \times 3}(\mathbb{Q}), N=\operatorname{Mat}_{2 \times 4}(\mathbb{Q}), \varphi(A)=A U$ where

$$
U=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Problem $2\left(\operatorname{Hom}_{R}\right)$. Let R be a commutative ring with $1 \neq 0$ and let A, B and M be R-modules. Show the following isomorphisms of R-modules:
(a) $\operatorname{Hom}_{R}(R, M) \cong M$,
(b) $\operatorname{Hom}_{R}(A \times B, M) \cong \operatorname{Hom}_{R}(A, M) \times \operatorname{Hom}_{R}(B, M)$, and
(c) $\operatorname{Hom}_{R}\left(R^{n}, M\right) \cong \underbrace{M \times \cdots \times M}_{n}$.
(d) Give an example to show that it is not always that case that $\operatorname{Hom}_{R}(M, R) \cong M$.

