Math 721 – Homework 1

Due Thursday, January 16, 2019 at 10:15am

Good practice problems (do not turn in solutions):

DF 10.1 Exercises 2, 4, 7, 9, 10, 11

DF 10.2 Exercises 3, 5, 6, 12

DF 10.3 Exercises 2, 7, 9, 16, 17

Problem 1 (Kernels and images). Let R be a ring with $1 \neq 0$.

- (a) If $\varphi: M \to N$ is a homomorphism of *R*-modules, show that the kernel and image of φ are submodules of *M* and *N*, respectively.
- (b) For each of the following *R*-module homomorphisms, describe the kernel and image as simply as possible. (You do not need to check that they are homomorphisms.)

(i)
$$R = \mathbb{Q}[x, y], M = R^2, N = R, \varphi(f, g) = xf + yg,$$

(ii)
$$R = \mathbb{Z}, M = R^2, N = R, \varphi(a, b) = 4a + 6b$$
, and

(ii) $R = \operatorname{Mat}_{2 \times 2}(\mathbb{Q}), M = \operatorname{Mat}_{2 \times 3}(\mathbb{Q}), N = \operatorname{Mat}_{2 \times 4}(\mathbb{Q}), \varphi(A) = AU$ where

$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Problem 2 (Hom_R). Let R be a commutative ring with $1 \neq 0$ and let A, B and M be R-modules. Show the following isomorphisms of R-modules:

- (a) $\operatorname{Hom}_R(R, M) \cong M$,
- (b) $\operatorname{Hom}_R(A \times B, M) \cong \operatorname{Hom}_R(A, M) \times \operatorname{Hom}_R(B, M)$, and
- (c) $\operatorname{Hom}_R(\mathbb{R}^n, M) \cong \underbrace{M \times \cdots \times M}_n$.

(d) Give an example to show that it is not always that case that $\operatorname{Hom}_R(M, R) \cong M$.